Blame view

Pods/Realm/include/core/realm/alloc.hpp 19.4 KB
75d24c15   yangbin   123
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
  /*************************************************************************
   *
   * Copyright 2016 Realm Inc.
   *
   * Licensed under the Apache License, Version 2.0 (the "License");
   * you may not use this file except in compliance with the License.
   * You may obtain a copy of the License at
   *
   * http://www.apache.org/licenses/LICENSE-2.0
   *
   * Unless required by applicable law or agreed to in writing, software
   * distributed under the License is distributed on an "AS IS" BASIS,
   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   * See the License for the specific language governing permissions and
   * limitations under the License.
   *
   **************************************************************************/
  
  #ifndef REALM_ALLOC_HPP
  #define REALM_ALLOC_HPP
  
  #include <cstdint>
  #include <cstddef>
  #include <atomic>
  
  #include <realm/util/features.h>
  #include <realm/util/terminate.hpp>
  #include <realm/util/assert.hpp>
  #include <realm/util/file.hpp>
  #include <realm/exceptions.hpp>
  #include <realm/util/safe_int_ops.hpp>
  #include <realm/node_header.hpp>
  #include <realm/util/file_mapper.hpp>
  
  // Temporary workaround for
  // https://developercommunity.visualstudio.com/content/problem/994075/64-bit-atomic-load-ices-cl-1924-with-o2-ob1.html
  #if defined REALM_ARCHITECTURE_X86_32 && defined REALM_WINDOWS
  #define REALM_WORKAROUND_MSVC_BUG REALM_NOINLINE
  #else
  #define REALM_WORKAROUND_MSVC_BUG
  #endif
  
  namespace realm {
  
  class Allocator;
  
  using ref_type = size_t;
  
  int_fast64_t from_ref(ref_type) noexcept;
  ref_type to_ref(int_fast64_t) noexcept;
  int64_t to_int64(size_t value) noexcept;
  
  class MemRef {
  public:
      MemRef() noexcept;
      ~MemRef() noexcept;
  
      MemRef(char* addr, ref_type ref, Allocator& alloc) noexcept;
      MemRef(ref_type ref, Allocator& alloc) noexcept;
  
      char* get_addr() const;
      ref_type get_ref() const;
      void set_ref(ref_type ref);
      void set_addr(char* addr);
  
  private:
      char* m_addr;
      ref_type m_ref;
  #if REALM_ENABLE_MEMDEBUG
      // Allocator that created m_ref. Used to verify that the ref is valid whenever you call
      // get_ref()/get_addr and that it e.g. has not been free'ed
      const Allocator* m_alloc = nullptr;
  #endif
  };
  
  
  /// The common interface for Realm allocators.
  ///
  /// A Realm allocator must associate a 'ref' to each allocated
  /// object and be able to efficiently map any 'ref' to the
  /// corresponding memory address. The 'ref' is an integer and it must
  /// always be divisible by 8. Also, a value of zero is used to
  /// indicate a null-reference, and must therefore never be returned by
  /// Allocator::alloc().
  ///
  /// The purpose of the 'refs' is to decouple the memory reference from
  /// the actual address and thereby allowing objects to be relocated in
  /// memory without having to modify stored references.
  ///
  /// \sa SlabAlloc
  class Allocator {
  public:
      /// The specified size must be divisible by 8, and must not be
      /// zero.
      ///
      /// \throw std::bad_alloc If insufficient memory was available.
      MemRef alloc(size_t size);
  
      /// Calls do_realloc().
      ///
      /// Note: The underscore has been added because the name `realloc`
      /// would conflict with a macro on the Windows platform.
      MemRef realloc_(ref_type, const char* addr, size_t old_size, size_t new_size);
  
      /// Calls do_free().
      ///
      /// Note: The underscore has been added because the name `free
      /// would conflict with a macro on the Windows platform.
      void free_(ref_type, const char* addr) noexcept;
  
      /// Shorthand for free_(mem.get_ref(), mem.get_addr()).
      void free_(MemRef mem) noexcept;
  
      /// Calls do_translate().
      char* translate(ref_type ref) const noexcept;
  
      /// Returns true if, and only if the object at the specified 'ref'
      /// is in the immutable part of the memory managed by this
      /// allocator. The method by which some objects become part of the
      /// immuatble part is entirely up to the class that implements
      /// this interface.
      bool is_read_only(ref_type) const noexcept;
  
      void set_read_only(bool ro)
      {
          m_is_read_only = ro;
      }
      /// Returns a simple allocator that can be used with free-standing
      /// Realm objects (such as a free-standing table). A
      /// free-standing object is one that is not part of a Group, and
      /// therefore, is not part of an actual database.
      static Allocator& get_default() noexcept;
  
      virtual ~Allocator() noexcept;
  
      // Disable copying. Copying an allocator can produce double frees.
      Allocator(const Allocator&) = delete;
      Allocator& operator=(const Allocator&) = delete;
  
      virtual void verify() const = 0;
  
  #ifdef REALM_DEBUG
      /// Terminate the program precisely when the specified 'ref' is
      /// freed (or reallocated). You can use this to detect whether the
      /// ref is freed (or reallocated), and even to get a stacktrace at
      /// the point where it happens. Call watch(0) to stop watching
      /// that ref.
      void watch(ref_type ref)
      {
          m_debug_watch = ref;
      }
  #endif
  
      struct MappedFile;
  
      static constexpr size_t section_size() noexcept
      {
          return 1 << section_shift;
      }
  
  protected:
      constexpr static int section_shift = 26;
  
      std::atomic<size_t> m_baseline; // Separation line between immutable and mutable refs.
  
      ref_type m_debug_watch = 0;
  
      // The following logically belongs in the slab allocator, but is placed
      // here to optimize a critical path:
  
      // The ref translation splits the full ref-space (both below and above baseline)
      // into equal chunks.
      struct RefTranslation {
          char* mapping_addr;
          uint64_t cookie;
          std::atomic<size_t> lowest_possible_xover_offset = 0;
  
          // member 'xover_mapping_addr' is used for memory synchronization of the fields
          // 'xover_mapping_base' and 'xover_encrypted_mapping'. It also imposes an ordering
          // on 'lowest_possible_xover_offset' such that once a non-null value of 'xover_mapping_addr'
          // has been acquired, 'lowest_possible_xover_offset' will never change.
          std::atomic<char*> xover_mapping_addr = nullptr;
          size_t xover_mapping_base = 0;
  #if REALM_ENABLE_ENCRYPTION
          util::EncryptedFileMapping* encrypted_mapping = nullptr;
          util::EncryptedFileMapping* xover_encrypted_mapping = nullptr;
  #endif
          explicit RefTranslation(char* addr)
              : mapping_addr(addr)
              , cookie(0x1234567890)
          {
          }
          RefTranslation()
              : RefTranslation(nullptr)
          {
          }
          ~RefTranslation()
          {
              cookie = 0xdeadbeefdeadbeef;
          }
          RefTranslation& operator=(const RefTranslation& from)
          {
              if (&from != this) {
                  mapping_addr = from.mapping_addr;
  #if REALM_ENABLE_ENCRYPTION
                  encrypted_mapping = from.encrypted_mapping;
  #endif
                  const auto local_xover_mapping_addr = from.xover_mapping_addr.load(std::memory_order_acquire);
  
                  // This must be loaded after xover_mapping_addr to ensure it isn't stale.
                  lowest_possible_xover_offset.store(from.lowest_possible_xover_offset, std::memory_order_relaxed);
  
                  if (local_xover_mapping_addr) {
                      xover_mapping_base = from.xover_mapping_base;
  #if REALM_ENABLE_ENCRYPTION
                      xover_encrypted_mapping = from.xover_encrypted_mapping;
  #endif
                      xover_mapping_addr.store(local_xover_mapping_addr, std::memory_order_release);
                  }
              }
              return *this;
          }
      };
      // This pointer may be changed concurrently with access, so make sure it is
      // atomic!
      std::atomic<RefTranslation*> m_ref_translation_ptr;
  
      /// The specified size must be divisible by 8, and must not be
      /// zero.
      ///
      /// \throw std::bad_alloc If insufficient memory was available.
      virtual MemRef do_alloc(const size_t size) = 0;
  
      /// The specified size must be divisible by 8, and must not be
      /// zero.
      ///
      /// The default version of this function simply allocates a new
      /// chunk of memory, copies over the old contents, and then frees
      /// the old chunk.
      ///
      /// \throw std::bad_alloc If insufficient memory was available.
      virtual MemRef do_realloc(ref_type, char* addr, size_t old_size, size_t new_size) = 0;
  
      /// Release the specified chunk of memory.
      virtual void do_free(ref_type, char* addr) = 0;
  
      /// Map the specified \a ref to the corresponding memory
      /// address. Note that if is_read_only(ref) returns true, then the
      /// referenced object is to be considered immutable, and it is
      /// then entirely the responsibility of the caller that the memory
      /// is not modified by way of the returned memory pointer.
      virtual char* do_translate(ref_type ref) const noexcept = 0;
      char* translate_critical(RefTranslation*, ref_type ref) const noexcept;
      char* translate_less_critical(RefTranslation*, ref_type ref) const noexcept;
      virtual void get_or_add_xover_mapping(RefTranslation&, size_t, size_t, size_t) = 0;
      Allocator() noexcept;
      size_t get_section_index(size_t pos) const noexcept;
      inline size_t get_section_base(size_t index) const noexcept;
  
  
      // The following counters are used to ensure accessor refresh,
      // and allows us to report many errors related to attempts to
      // access data which is no longer current.
      //
      // * storage_versioning: monotonically increasing counter
      //   bumped whenever the underlying storage layout is changed,
      //   or if the owning accessor have been detached.
      // * content_versioning: monotonically increasing counter
      //   bumped whenever the data is changed. Used to detect
      //   if queries are stale.
      // * instance_versioning: monotonically increasing counter
      //   used to detect if the allocator (and owning structure, e.g. Table)
      //   is recycled. Mismatch on this counter will cause accesors
      //   lower in the hierarchy to throw if access is attempted.
      std::atomic<uint_fast64_t> m_content_versioning_counter;
  
      std::atomic<uint_fast64_t> m_storage_versioning_counter;
  
      std::atomic<uint_fast64_t> m_instance_versioning_counter;
  
      inline uint_fast64_t get_storage_version(uint64_t instance_version)
      {
          if (instance_version != m_instance_versioning_counter) {
              throw LogicError(LogicError::detached_accessor);
          }
          return m_storage_versioning_counter.load(std::memory_order_acquire);
      }
  
  public:
      inline uint_fast64_t get_storage_version()
      {
          return m_storage_versioning_counter.load(std::memory_order_acquire);
      }
  
  protected:
      inline void bump_storage_version() noexcept
      {
          m_storage_versioning_counter.fetch_add(1, std::memory_order_acq_rel);
      }
  
  public:
      REALM_WORKAROUND_MSVC_BUG inline uint_fast64_t get_content_version() noexcept
      {
          return m_content_versioning_counter.load(std::memory_order_acquire);
      }
  
  protected:
      inline uint_fast64_t bump_content_version() noexcept
      {
          return m_content_versioning_counter.fetch_add(1, std::memory_order_acq_rel) + 1;
      }
  
      REALM_WORKAROUND_MSVC_BUG inline uint_fast64_t get_instance_version() noexcept
      {
          return m_instance_versioning_counter.load(std::memory_order_relaxed);
      }
  
      inline void bump_instance_version() noexcept
      {
          m_instance_versioning_counter.fetch_add(1, std::memory_order_relaxed);
      }
  
  private:
      bool m_is_read_only = false; // prevent any alloc or free operations
  
      friend class Table;
      friend class ClusterTree;
      friend class Group;
      friend class WrappedAllocator;
      friend class Obj;
      template <class, class>
      friend class CollectionBaseImpl;
      friend class Dictionary;
  };
  
  
  class WrappedAllocator : public Allocator {
  public:
      WrappedAllocator(Allocator& underlying_allocator)
          : m_alloc(&underlying_allocator)
      {
          m_baseline.store(m_alloc->m_baseline, std::memory_order_relaxed);
          m_debug_watch = 0;
          m_ref_translation_ptr.store(m_alloc->m_ref_translation_ptr);
      }
  
      ~WrappedAllocator() {}
  
      void switch_underlying_allocator(Allocator& underlying_allocator)
      {
          m_alloc = &underlying_allocator;
          m_baseline.store(m_alloc->m_baseline, std::memory_order_relaxed);
          m_debug_watch = 0;
          refresh_ref_translation();
      }
  
      void update_from_underlying_allocator(bool writable)
      {
          switch_underlying_allocator(*m_alloc);
          set_read_only(!writable);
      }
  
      void refresh_ref_translation()
      {
          m_ref_translation_ptr.store(m_alloc->m_ref_translation_ptr);
      }
  
  protected:
      void get_or_add_xover_mapping(RefTranslation& txl, size_t index, size_t offset, size_t size) override
      {
          m_alloc->get_or_add_xover_mapping(txl, index, offset, size);
      }
  
  private:
      Allocator* m_alloc;
      MemRef do_alloc(const size_t size) override
      {
          auto result = m_alloc->do_alloc(size);
          bump_storage_version();
          m_baseline.store(m_alloc->m_baseline, std::memory_order_relaxed);
          m_ref_translation_ptr.store(m_alloc->m_ref_translation_ptr);
          return result;
      }
      virtual MemRef do_realloc(ref_type ref, char* addr, size_t old_size, size_t new_size) override
      {
          auto result = m_alloc->do_realloc(ref, addr, old_size, new_size);
          bump_storage_version();
          m_baseline.store(m_alloc->m_baseline, std::memory_order_relaxed);
          m_ref_translation_ptr.store(m_alloc->m_ref_translation_ptr);
          return result;
      }
  
      virtual void do_free(ref_type ref, char* addr) noexcept override
      {
          return m_alloc->do_free(ref, addr);
      }
  
      virtual char* do_translate(ref_type ref) const noexcept override
      {
          return m_alloc->translate(ref);
      }
  
      virtual void verify() const override
      {
          m_alloc->verify();
      }
  };
  
  
  // Implementation:
  
  inline int_fast64_t from_ref(ref_type v) noexcept
  {
      // Check that v is divisible by 8 (64-bit aligned).
      REALM_ASSERT_DEBUG(v % 8 == 0);
  
      static_assert(std::is_same<ref_type, size_t>::value,
                    "If ref_type changes, from_ref and to_ref should probably be updated");
  
      // Make sure that we preserve the bit pattern of the ref_type (without sign extension).
      return int_fast64_t(uint_fast64_t(v));
  }
  
  inline ref_type to_ref(int_fast64_t v) noexcept
  {
      // Check that v is divisible by 8 (64-bit aligned).
      REALM_ASSERT_DEBUG(v % 8 == 0);
  
      // C++11 standard, paragraph 4.7.2 [conv.integral]:
      // If the destination type is unsigned, the resulting value is the least unsigned integer congruent to the source
      // integer (modulo 2n where n is the number of bits used to represent the unsigned type). [ Note: In a two's
      // complement representation, this conversion is conceptual and there is no change in the bit pattern (if there is
      // no truncation). - end note ]
      static_assert(std::is_unsigned<ref_type>::value,
                    "If ref_type changes, from_ref and to_ref should probably be updated");
      return ref_type(v);
  }
  
  inline int64_t to_int64(size_t value) noexcept
  {
      int64_t res = static_cast<int64_t>(value);
      REALM_ASSERT_DEBUG(res >= 0);
      return static_cast<int64_t>(value);
  }
  
  
  inline MemRef::MemRef() noexcept
      : m_addr(nullptr)
      , m_ref(0)
  {
  }
  
  inline MemRef::~MemRef() noexcept {}
  
  inline MemRef::MemRef(char* addr, ref_type ref, Allocator& alloc) noexcept
      : m_addr(addr)
      , m_ref(ref)
  {
      static_cast<void>(alloc);
  #if REALM_ENABLE_MEMDEBUG
      m_alloc = &alloc;
  #endif
  }
  
  inline MemRef::MemRef(ref_type ref, Allocator& alloc) noexcept
      : m_addr(alloc.translate(ref))
      , m_ref(ref)
  {
      static_cast<void>(alloc);
  #if REALM_ENABLE_MEMDEBUG
      m_alloc = &alloc;
  #endif
  }
  
  inline char* MemRef::get_addr() const
  {
  #if REALM_ENABLE_MEMDEBUG
      // Asserts if the ref has been freed
      m_alloc->translate(m_ref);
  #endif
      return m_addr;
  }
  
  inline ref_type MemRef::get_ref() const
  {
  #if REALM_ENABLE_MEMDEBUG
      // Asserts if the ref has been freed
      m_alloc->translate(m_ref);
  #endif
      return m_ref;
  }
  
  inline void MemRef::set_ref(ref_type ref)
  {
  #if REALM_ENABLE_MEMDEBUG
      // Asserts if the ref has been freed
      m_alloc->translate(ref);
  #endif
      m_ref = ref;
  }
  
  inline void MemRef::set_addr(char* addr)
  {
      m_addr = addr;
  }
  
  inline MemRef Allocator::alloc(size_t size)
  {
      if (m_is_read_only)
          throw realm::LogicError(realm::LogicError::wrong_transact_state);
      return do_alloc(size);
  }
  
  inline MemRef Allocator::realloc_(ref_type ref, const char* addr, size_t old_size, size_t new_size)
  {
  #ifdef REALM_DEBUG
      if (ref == m_debug_watch)
          REALM_TERMINATE("Allocator watch: Ref was reallocated");
  #endif
      if (m_is_read_only)
          throw realm::LogicError(realm::LogicError::wrong_transact_state);
      return do_realloc(ref, const_cast<char*>(addr), old_size, new_size);
  }
  
  inline void Allocator::free_(ref_type ref, const char* addr) noexcept
  {
  #ifdef REALM_DEBUG
      if (ref == m_debug_watch)
          REALM_TERMINATE("Allocator watch: Ref was freed");
  #endif
      REALM_ASSERT(!m_is_read_only);
  
      return do_free(ref, const_cast<char*>(addr));
  }
  
  inline void Allocator::free_(MemRef mem) noexcept
  {
      free_(mem.get_ref(), mem.get_addr());
  }
  
  inline size_t Allocator::get_section_base(size_t index) const noexcept
  {
      return index << section_shift; // 64MB chunks
  }
  
  inline size_t Allocator::get_section_index(size_t pos) const noexcept
  {
      return pos >> section_shift; // 64Mb chunks
  }
  
  inline bool Allocator::is_read_only(ref_type ref) const noexcept
  {
      REALM_ASSERT_DEBUG(ref != 0);
      // REALM_ASSERT_DEBUG(m_baseline != 0); // Attached SlabAlloc
      return ref < m_baseline.load(std::memory_order_relaxed);
  }
  
  inline Allocator::Allocator() noexcept
  {
      m_content_versioning_counter = 0;
      m_storage_versioning_counter = 0;
      m_instance_versioning_counter = 0;
      m_ref_translation_ptr = nullptr;
  }
  
  inline Allocator::~Allocator() noexcept {}
  
  // performance critical part of the translation process. Less critical code is in translate_less_critical.
  inline char* Allocator::translate_critical(RefTranslation* ref_translation_ptr, ref_type ref) const noexcept
  {
      size_t idx = get_section_index(ref);
      RefTranslation& txl = ref_translation_ptr[idx];
      if (REALM_LIKELY(txl.cookie == 0x1234567890)) {
          size_t offset = ref - get_section_base(idx);
          size_t lowest_possible_xover_offset = txl.lowest_possible_xover_offset.load(std::memory_order_relaxed);
          if (REALM_LIKELY(offset < lowest_possible_xover_offset)) {
              // the lowest possible xover offset may grow concurrently, but that will not affect this code path
              char* addr = txl.mapping_addr + offset;
  #if REALM_ENABLE_ENCRYPTION
              realm::util::encryption_read_barrier(addr, NodeHeader::header_size, txl.encrypted_mapping,
                                                   NodeHeader::get_byte_size_from_header);
  #endif
              return addr;
          }
          else {
              // the lowest possible xover offset may grow concurrently, but that will be handled inside the call
              return translate_less_critical(ref_translation_ptr, ref);
          }
      }
      realm::util::terminate("Invalid ref translation entry", __FILE__, __LINE__, txl.cookie, 0x1234567890);
      return nullptr;
  }
  
  inline char* Allocator::translate(ref_type ref) const noexcept
  {
      auto ref_translation_ptr = m_ref_translation_ptr.load(std::memory_order_acquire);
      if (REALM_LIKELY(ref_translation_ptr)) {
          return translate_critical(ref_translation_ptr, ref);
      }
      else {
          return do_translate(ref);
      }
  }
  
  
  } // namespace realm
  
  #endif // REALM_ALLOC_HPP