Blame view

Pods/Realm/include/core/realm/util/thread.hpp 21 KB
75d24c15   yangbin   123
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
  /*************************************************************************
   *
   * Copyright 2016 Realm Inc.
   *
   * Licensed under the Apache License, Version 2.0 (the "License");
   * you may not use this file except in compliance with the License.
   * You may obtain a copy of the License at
   *
   * http://www.apache.org/licenses/LICENSE-2.0
   *
   * Unless required by applicable law or agreed to in writing, software
   * distributed under the License is distributed on an "AS IS" BASIS,
   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   * See the License for the specific language governing permissions and
   * limitations under the License.
   *
   **************************************************************************/
  
  #ifndef REALM_UTIL_THREAD_HPP
  #define REALM_UTIL_THREAD_HPP
  
  #include <exception>
  
  #ifdef _WIN32
  #include <thread>
  #include <condition_variable> // for windows non-interprocess condvars we use std::condition_variable
  #include <Windows.h>
  #include <process.h> // _getpid()
  #else
  #include <pthread.h>
  #endif
  
  // Use below line to enable a thread bug detection tool. Note: Will make program execution slower.
  // #include <../test/pthread_test.hpp>
  
  #include <cerrno>
  #include <cstddef>
  #include <string>
  
  #include <realm/util/features.h>
  #include <realm/util/assert.hpp>
  #include <realm/util/terminate.hpp>
  #include <memory>
  #include <stdexcept>
  
  #include <atomic>
  
  namespace realm {
  namespace util {
  
  
  /// A separate thread of execution.
  ///
  /// This class is a C++03 compatible reproduction of a subset of std::thread
  /// from C++11 (when discounting Thread::start(), Thread::set_name(), and
  /// Thread::get_name()).
  class Thread {
  public:
      Thread();
      ~Thread() noexcept;
  
      template <class F>
      explicit Thread(F func);
  
      // Disable copying. It is an error to copy this Thread class.
      Thread(const Thread&) = delete;
      Thread& operator=(const Thread&) = delete;
  
      Thread(Thread&&) noexcept;
  
      /// This method is an extension of the API provided by
      /// std::thread. This method exists because proper move semantics
      /// is unavailable in C++03. If move semantics had been available,
      /// calling `start(func)` would have been equivalent to `*this =
      /// Thread(func)`. Please see std::thread::operator=() for
      /// details.
      template <class F>
      void start(F func);
  
      bool joinable() noexcept;
  
      void join();
  
      // If supported by the platform, set the name of the calling thread (mainly
      // for debugging purposes). The name will be silently clamped to whatever
      // limit the platform places on these names. Linux places a limit of 15
      // characters for these names.
      static void set_name(const std::string&);
  
      // If supported by the platform, this function assigns the name of the
      // calling thread to \a name, and returns true, otherwise it does nothing
      // and returns false.
      static bool get_name(std::string& name) noexcept;
  
  private:
  
  #ifdef _WIN32
      std::thread m_std_thread;
  #else    
      pthread_t m_id;
  #endif
      bool m_joinable;
      typedef void* (*entry_func_type)(void*);
  
      void start(entry_func_type, void* arg);
  
      template <class>
      static void* entry_point(void*) noexcept;
  
      REALM_NORETURN static void create_failed(int);
      REALM_NORETURN static void join_failed(int);
  };
  
  
  /// Low-level mutual exclusion device.
  class Mutex {
  public:
      Mutex();
      ~Mutex() noexcept;
  
      struct process_shared_tag {
      };
      /// Initialize this mutex for use across multiple processes. When
      /// constructed this way, the instance may be placed in memory
      /// shared by multiple processes, as well as in a memory mapped
      /// file. Such a mutex remains valid even after the constructing
      /// process terminates. Deleting the instance (freeing the memory
      /// or deleting the file) without first calling the destructor is
      /// legal and will not cause any system resources to be leaked.
      Mutex(process_shared_tag);
  
      // Disable copying.
      Mutex(const Mutex&) = delete;
      Mutex& operator=(const Mutex&) = delete;
  
      friend class LockGuard;
      friend class UniqueLock;
      friend class InterprocessCondVar;
  
      void lock() noexcept;
      bool try_lock() noexcept;
      void unlock() noexcept;
  
  protected:
  #ifdef _WIN32
      // Used for non-process-shared mutex. We only know at runtime whether or not to use it, depending on if we call
      // Mutex::Mutex(process_shared_tag)
      CRITICAL_SECTION m_critical_section;
  #else
      pthread_mutex_t m_impl = PTHREAD_MUTEX_INITIALIZER;
  #endif
  
      struct no_init_tag {
      };
      Mutex(no_init_tag)
      {
      }
  
      void init_as_regular();
      void init_as_process_shared(bool robust_if_available);
  
      REALM_NORETURN static void init_failed(int);
      REALM_NORETURN static void attr_init_failed(int);
      REALM_NORETURN static void destroy_failed(int) noexcept;
      REALM_NORETURN static void lock_failed(int) noexcept;
  
  private:
      friend class CondVar;
      friend class RobustMutex;
  };
  
  
  /// A simple mutex ownership wrapper.
  class LockGuard {
  public:
      LockGuard(Mutex&) noexcept;
      ~LockGuard() noexcept;
  
  private:
      Mutex& m_mutex;
      friend class CondVar;
  };
  
  
  /// See UniqueLock.
  struct defer_lock_tag {
  };
  
  /// A general-purpose mutex ownership wrapper supporting deferred
  /// locking as well as repeated unlocking and relocking.
  class UniqueLock {
  public:
      UniqueLock(Mutex&) noexcept;
      UniqueLock(Mutex&, defer_lock_tag) noexcept;
      ~UniqueLock() noexcept;
  
      void lock() noexcept;
      void unlock() noexcept;
      bool holds_lock() noexcept;
  
  private:
      Mutex* m_mutex;
      bool m_is_locked;
  };
  
  
  /// A robust version of a process-shared mutex.
  ///
  /// A robust mutex is one that detects whether a thread (or process)
  /// has died while holding a lock on the mutex.
  ///
  /// When the present platform does not offer support for robust
  /// mutexes, this mutex class behaves as a regular process-shared
  /// mutex, which means that if a thread dies while holding a lock, any
  /// future attempt at locking will block indefinitely.
  class RobustMutex : private Mutex {
  public:
      RobustMutex();
      ~RobustMutex() noexcept;
  
      static bool is_robust_on_this_platform() noexcept;
  
      class NotRecoverable;
  
      /// \param recover_func If the present platform does not support
      /// robust mutexes, this function is never called. Otherwise it is
      /// called if, and only if a thread has died while holding a
      /// lock. The purpose of the function is to reestablish a
      /// consistent shared state. If it fails to do this by throwing an
      /// exception, the mutex enters the 'unrecoverable' state where
      /// any future attempt at locking it will fail and cause
      /// NotRecoverable to be thrown. This function is advised to throw
      /// NotRecoverable when it fails, but it may throw any exception.
      ///
      /// \throw NotRecoverable If thrown by the specified recover
      /// function, or if the mutex has entered the 'unrecoverable'
      /// state due to a different thread throwing from its recover
      /// function.
      template <class Func>
      void lock(Func recover_func);
  
      template <class Func>
      bool try_lock(Func recover_func);
  
      void unlock() noexcept;
  
      /// Low-level locking of robust mutex.
      ///
      /// If the present platform does not support robust mutexes, this
      /// function always returns true. Otherwise it returns false if,
      /// and only if a thread has died while holding a lock.
      ///
      /// \note Most application should never call this function
      /// directly. It is called automatically when using the ordinary
      /// lock() function.
      ///
      /// \throw NotRecoverable If this mutex has entered the "not
      /// recoverable" state. It enters this state if
      /// mark_as_consistent() is not called between a call to
      /// robust_lock() that returns false and the corresponding call to
      /// unlock().
      bool low_level_lock();
  
      /// Low-level try-lock of robust mutex
      ///
      /// If the present platform does not support robust mutexes, this
      /// function always returns 0 or 1. Otherwise it returns -1 if,
      /// and only if a thread has died while holding a lock.
      ///
      /// Returns 1 if the lock is succesfully obtained.
      /// Returns 0 if the lock is held by somebody else (not obtained)
      /// Returns -1 if a thread has died while holding a lock.
      ///
      /// \note Most application should never call this function
      /// directly. It is called automatically when using the ordinary
      /// lock() function.
      ///
      /// \throw NotRecoverable If this mutex has entered the "not
      /// recoverable" state. It enters this state if
      /// mark_as_consistent() is not called between a call to
      /// robust_lock() that returns false and the corresponding call to
      /// unlock().
      int try_low_level_lock();
  
      /// Pull this mutex out of the 'inconsistent' state.
      ///
      /// Must be called only after low_level_lock() has returned false.
      ///
      /// \note Most application should never call this function
      /// directly. It is called automatically when using the ordinary
      /// lock() function.
      void mark_as_consistent() noexcept;
  
      /// Attempt to check if this mutex is a valid object.
      ///
      /// This attempts to trylock() the mutex, and if that fails returns false if
      /// the return value indicates that the low-level mutex is invalid (which is
      /// distinct from 'inconsistent'). Although pthread_mutex_trylock() may
      /// return EINVAL if the argument is not an initialized mutex object, merely
      /// attempting to check if an arbitrary blob of memory is a mutex object may
      /// involve undefined behavior, so it is only safe to assume that this
      /// function will run correctly when it is known that the mutex object is
      /// valid.
      bool is_valid() noexcept;
  
      friend class CondVar;
  };
  
  class RobustMutex::NotRecoverable : public std::exception {
  public:
      const char* what() const noexcept override
      {
          return "Failed to recover consistent state of shared memory";
      }
  };
  
  
  /// A simple robust mutex ownership wrapper.
  class RobustLockGuard {
  public:
      /// \param m the mutex to guard
      /// \param func See RobustMutex::lock().
      template <class TFunc>
      RobustLockGuard(RobustMutex& m, TFunc func);
      ~RobustLockGuard() noexcept;
  
  private:
      RobustMutex& m_mutex;
      friend class CondVar;
  };
  
  
  /// Condition variable for use in synchronization monitors.
  class CondVar {
  public:
      CondVar();
      ~CondVar() noexcept;
  
      struct process_shared_tag {
      };
  
      /// Initialize this condition variable for use across multiple
      /// processes. When constructed this way, the instance may be
      /// placed in memory shared by multimple processes, as well as in
      /// a memory mapped file. Such a condition variable remains valid
      /// even after the constructing process terminates. Deleting the
      /// instance (freeing the memory or deleting the file) without
      /// first calling the destructor is legal and will not cause any
      /// system resources to be leaked.
      CondVar(process_shared_tag);
  
      /// Wait for another thread to call notify() or notify_all().
      void wait(LockGuard& l) noexcept;
      template <class Func>
      void wait(RobustMutex& m, Func recover_func, const struct timespec* tp = nullptr);
  
      /// If any threads are wating for this condition, wake up at least
      /// one.
      void notify() noexcept;
  
      /// Wake up every thread that is currently wating on this
      /// condition.
      void notify_all() noexcept;
  
  private:
  #ifdef _WIN32
      CONDITION_VARIABLE m_condvar = CONDITION_VARIABLE_INIT;
  #else
      pthread_cond_t m_impl;
  #endif
  
      REALM_NORETURN static void init_failed(int);
      REALM_NORETURN static void attr_init_failed(int);
      REALM_NORETURN static void destroy_failed(int) noexcept;
      void handle_wait_error(int error);
  };
  
  
  class RaceDetector {
      std::atomic<bool> busy;
  
  public:
      RaceDetector()
      {
          busy.store(false);
      }
      void enter()
      {
          bool already_busy = busy.exchange(true, std::memory_order_acq_rel);
          if (already_busy)
              throw std::runtime_error("Race detected - critical section busy on entry");
      }
      void leave()
      {
          busy.store(false, std::memory_order_release);
      }
      friend class CriticalSection;
  };
  
  class CriticalSection {
      RaceDetector& rd;
  
  public:
      CriticalSection(RaceDetector& race)
          : rd(race)
      {
          rd.enter();
      }
      ~CriticalSection()
      {
          rd.leave();
      }
  };
  
  // Implementation:
  
  inline Thread::Thread()
      : m_joinable(false)
  {
  }
  
  template <class F>
  inline Thread::Thread(F func)
      : m_joinable(true)
  {
      std::unique_ptr<F> func2(new F(func));       // Throws
      start(&Thread::entry_point<F>, func2.get()); // Throws
      func2.release();
  }
  
  inline Thread::Thread(Thread&& thread) noexcept
  {
  #ifndef _WIN32
      m_id = thread.m_id;
      m_joinable = thread.m_joinable;
      thread.m_joinable = false;
  #endif
  }
  
  template <class F>
  inline void Thread::start(F func)
  {
      if (m_joinable)
          std::terminate();
      std::unique_ptr<F> func2(new F(func));       // Throws
      start(&Thread::entry_point<F>, func2.get()); // Throws
      func2.release();
      m_joinable = true;
  }
  
  inline Thread::~Thread() noexcept
  {
      if (m_joinable)
          REALM_TERMINATE("Destruction of joinable thread");
  }
  
  inline bool Thread::joinable() noexcept
  {
      return m_joinable;
  }
  
  inline void Thread::start(entry_func_type entry_func, void* arg)
  {
  #ifdef _WIN32
      m_std_thread = std::thread(entry_func, arg);
  #else
      const pthread_attr_t* attr = nullptr; // Use default thread attributes
      int r = pthread_create(&m_id, attr, entry_func, arg);
      if (REALM_UNLIKELY(r != 0))
          create_failed(r); // Throws
  #endif
  }
  
  template <class F>
  inline void* Thread::entry_point(void* cookie) noexcept
  {
      std::unique_ptr<F> func(static_cast<F*>(cookie));
      try {
          (*func)();
      }
      catch (...) {
          std::terminate();
      }
      return 0;
  }
  
  
  inline Mutex::Mutex()
  {
      init_as_regular();
  }
  
  inline Mutex::Mutex(process_shared_tag)
  {
      bool robust_if_available = false;
      init_as_process_shared(robust_if_available);
  }
  
  inline Mutex::~Mutex() noexcept
  {
  #ifndef _WIN32
      int r = pthread_mutex_destroy(&m_impl);
      if (REALM_UNLIKELY(r != 0))
          destroy_failed(r);
  #else
      DeleteCriticalSection(&m_critical_section);
  #endif
  }
  
  inline void Mutex::init_as_regular()
  {
  #ifndef _WIN32
      int r = pthread_mutex_init(&m_impl, 0);
      if (REALM_UNLIKELY(r != 0))
          init_failed(r);
  #else
      InitializeCriticalSection(&m_critical_section);
  #endif
  }
  
  inline void Mutex::lock() noexcept
  {
  #ifdef _WIN32
      EnterCriticalSection(&m_critical_section);
  #else
      int r = pthread_mutex_lock(&m_impl);
      if (REALM_LIKELY(r == 0))
          return;
      lock_failed(r);
  #endif
  }
  
  inline bool Mutex::try_lock() noexcept
  {
  #ifdef _WIN32
      return TryEnterCriticalSection(&m_critical_section);
  #else
      int r = pthread_mutex_trylock(&m_impl);
      if (r == EBUSY) {
          return false;
      }
      else if (r == 0) {
          return true;
      }
      lock_failed(r);
  #endif
  }
  
  inline void Mutex::unlock() noexcept
  {
  #ifdef _WIN32
      LeaveCriticalSection(&m_critical_section);
  #else
      int r = pthread_mutex_unlock(&m_impl);
      REALM_ASSERT(r == 0);
  #endif
  }
  
  
  inline LockGuard::LockGuard(Mutex& m) noexcept
      : m_mutex(m)
  {
      m_mutex.lock();
  }
  
  inline LockGuard::~LockGuard() noexcept
  {
      m_mutex.unlock();
  }
  
  
  inline UniqueLock::UniqueLock(Mutex& m) noexcept
      : m_mutex(&m)
  {
      m_mutex->lock();
      m_is_locked = true;
  }
  
  inline UniqueLock::UniqueLock(Mutex& m, defer_lock_tag) noexcept
      : m_mutex(&m)
  {
      m_is_locked = false;
  }
  
  inline UniqueLock::~UniqueLock() noexcept
  {
      if (m_is_locked)
          m_mutex->unlock();
  }
  
  inline bool UniqueLock::holds_lock() noexcept
  {
      return m_is_locked;
  }
  
  inline void UniqueLock::lock() noexcept
  {
      m_mutex->lock();
      m_is_locked = true;
  }
  
  inline void UniqueLock::unlock() noexcept
  {
      m_mutex->unlock();
      m_is_locked = false;
  }
  
  template <typename TFunc>
  inline RobustLockGuard::RobustLockGuard(RobustMutex& m, TFunc func)
      : m_mutex(m)
  {
      m_mutex.lock(func);
  }
  
  inline RobustLockGuard::~RobustLockGuard() noexcept
  {
      m_mutex.unlock();
  }
  
  
  inline RobustMutex::RobustMutex()
      : Mutex(no_init_tag())
  {
      bool robust_if_available = true;
      init_as_process_shared(robust_if_available);
  }
  
  inline RobustMutex::~RobustMutex() noexcept
  {
  }
  
  template <class Func>
  inline void RobustMutex::lock(Func recover_func)
  {
      bool no_thread_has_died = low_level_lock(); // Throws
      if (REALM_LIKELY(no_thread_has_died))
          return;
      try {
          recover_func(); // Throws
          mark_as_consistent();
          // If we get this far, the protected memory has been
          // brought back into a consistent state, and the mutex has
          // been notified about this. This means that we can safely
          // enter the applications critical section.
      }
      catch (...) {
          // Unlocking without first calling mark_as_consistent()
          // means that the mutex enters the "not recoverable"
          // state, which will cause all future attempts at locking
          // to fail.
          unlock();
          throw;
      }
  }
  
  template <class Func>
  inline bool RobustMutex::try_lock(Func recover_func)
  {
      int lock_result = try_low_level_lock(); // Throws
      if (lock_result == 0) return false;
      bool no_thread_has_died = lock_result == 1;
      if (REALM_LIKELY(no_thread_has_died))
          return true;
      try {
          recover_func(); // Throws
          mark_as_consistent();
          // If we get this far, the protected memory has been
          // brought back into a consistent state, and the mutex has
          // been notified aboit this. This means that we can safely
          // enter the applications critical section.
      }
      catch (...) {
          // Unlocking without first calling mark_as_consistent()
          // means that the mutex enters the "not recoverable"
          // state, which will cause all future attempts at locking
          // to fail.
          unlock();
          throw;
      }
      return true;
  }
  
  inline void RobustMutex::unlock() noexcept
  {
      Mutex::unlock();
  }
  
  
  inline CondVar::CondVar()
  {
  #ifndef _WIN32
      int r = pthread_cond_init(&m_impl, 0);
      if (REALM_UNLIKELY(r != 0))
          init_failed(r);
  #endif
  }
  
  inline CondVar::~CondVar() noexcept
  {
  #ifndef _WIN32
      int r = pthread_cond_destroy(&m_impl);
      if (REALM_UNLIKELY(r != 0))
          destroy_failed(r);
  #endif
  }
  
  inline void CondVar::wait(LockGuard& l) noexcept
  {
  #ifdef _WIN32
      SleepConditionVariableCS(&m_condvar, &l.m_mutex.m_critical_section, INFINITE);
  #else
      int r = pthread_cond_wait(&m_impl, &l.m_mutex.m_impl);
      if (REALM_UNLIKELY(r != 0))
          REALM_TERMINATE("pthread_cond_wait() failed");
  #endif
  }
  
  template <class Func>
  inline void CondVar::wait(RobustMutex& m, Func recover_func, const struct timespec* tp)
  {
      int r;
  
      if (!tp) {
  #ifdef _WIN32
          if (!SleepConditionVariableCS(&m_condvar, &m.m_critical_section, INFINITE))
              r = GetLastError();
          else
              r = 0;
  #else
          r = pthread_cond_wait(&m_impl, &m.m_impl);
  #endif
      }
      else {
  #ifdef _WIN32
          if (!SleepConditionVariableCS(&m_condvar, &m.m_critical_section, tp->tv_sec / 1000)) {
              r = GetLastError();
              if (r == ERROR_TIMEOUT)
                  return;
          } else {
              r = 0;
          }
  #else
          r = pthread_cond_timedwait(&m_impl, &m.m_impl, tp);
          if (r == ETIMEDOUT)
              return;
  #endif
      }
  
      if (REALM_LIKELY(r == 0))
          return;
  
      handle_wait_error(r);
  
      try {
          recover_func(); // Throws
          m.mark_as_consistent();
          // If we get this far, the protected memory has been
          // brought back into a consistent state, and the mutex has
          // been notified aboit this. This means that we can safely
          // enter the applications critical section.
      }
      catch (...) {
          // Unlocking without first calling mark_as_consistent()
          // means that the mutex enters the "not recoverable"
          // state, which will cause all future attempts at locking
          // to fail.
          m.unlock();
          throw;
      }
  }
  
  inline void CondVar::notify() noexcept
  {
  #ifdef _WIN32
      WakeConditionVariable(&m_condvar);
  #else
      int r = pthread_cond_signal(&m_impl);
      REALM_ASSERT(r == 0);
  #endif
  }
  
  inline void CondVar::notify_all() noexcept
  {
  #ifdef _WIN32
      WakeAllConditionVariable(&m_condvar);
  #else
      int r = pthread_cond_broadcast(&m_impl);
      REALM_ASSERT(r == 0);
  #endif
  }
  
  // helpers which can ensure atomic access to memory which has not itself been declared atomic.
  // This can be used to e.g. ensure atomic access to members of a vector. Vectors does not
  // fully allow atomic members because operations on vector may relocate the underlying memory.
  // use with care!
  template <typename T>
  T load_atomic(T& t_ref, std::memory_order order)
  {
      std::atomic<T>* t_ptr = reinterpret_cast<std::atomic<T>*>(&t_ref);
      T t = atomic_load_explicit(t_ptr, order);
      return t;
  }
  
  template <typename T>
  void store_atomic(T& t_ref, T value, std::memory_order order)
  {
      std::atomic<T>* t_ptr = reinterpret_cast<std::atomic<T>*>(&t_ref);
      atomic_store_explicit(t_ptr, value, order);
  }
  
  
  } // namespace util
  } // namespace realm
  
  #endif // REALM_UTIL_THREAD_HPP