Blame view

Pods/Realm/include/core/realm/array.hpp 71.7 KB
75d24c15   yangbin   123
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
  /*************************************************************************
   *
   * Copyright 2016 Realm Inc.
   *
   * Licensed under the Apache License, Version 2.0 (the "License");
   * you may not use this file except in compliance with the License.
   * You may obtain a copy of the License at
   *
   * http://www.apache.org/licenses/LICENSE-2.0
   *
   * Unless required by applicable law or agreed to in writing, software
   * distributed under the License is distributed on an "AS IS" BASIS,
   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   * See the License for the specific language governing permissions and
   * limitations under the License.
   *
   **************************************************************************/
  
  /*
  Searching: The main finding function is:
      template <class cond, Action action, size_t bitwidth, class Callback>
      void find(int64_t value, size_t start, size_t end, size_t baseindex, QueryState *state, Callback callback) const
  
      cond:       One of Equal, NotEqual, Greater, etc. classes
      Action:     One of act_ReturnFirst, act_FindAll, act_Max, act_CallbackIdx, etc, constants
      Callback:   Optional function to call for each search result. Will be called if action == act_CallbackIdx
  
      find() will call find_action_pattern() or find_action() that again calls match() for each search result which
      optionally calls callback():
  
          find() -> find_action() -------> bool match() -> bool callback()
               |                            ^
               +-> find_action_pattern()----+
  
      If callback() returns false, find() will exit, otherwise it will keep searching remaining items in array.
  */
  
  #ifndef REALM_ARRAY_HPP
  #define REALM_ARRAY_HPP
  
  #include <realm/node.hpp>
  
  #include <cmath>
  #include <cstdlib> // size_t
  #include <algorithm>
  #include <utility>
  #include <vector>
  #include <ostream>
  
  #include <cstdint> // unint8_t etc
  
  #include <realm/util/assert.hpp>
  #include <realm/util/file_mapper.hpp>
  #include <realm/utilities.hpp>
  #include <realm/alloc.hpp>
  #include <realm/string_data.hpp>
  #include <realm/query_conditions.hpp>
  #include <realm/column_fwd.hpp>
  #include <realm/array_direct.hpp>
  #include <realm/array_unsigned.hpp>
  
  /*
      MMX: mmintrin.h
      SSE: xmmintrin.h
      SSE2: emmintrin.h
      SSE3: pmmintrin.h
      SSSE3: tmmintrin.h
      SSE4A: ammintrin.h
      SSE4.1: smmintrin.h
      SSE4.2: nmmintrin.h
  */
  #ifdef REALM_COMPILER_SSE
  #include <emmintrin.h>             // SSE2
  #include <realm/realm_nmmintrin.h> // SSE42
  #endif
  
  namespace realm {
  
  template <class T>
  inline T no0(T v)
  {
      return v == 0 ? 1 : v;
  }
  
  // Pre-definitions
  struct ObjKey;
  class Array;
  class GroupWriter;
  namespace _impl {
  class ArrayWriterBase;
  }
  
  template <class T>
  class BPlusTree;
  
  using KeyColumn = BPlusTree<ObjKey>;
  
  
  struct MemStats {
      size_t allocated = 0;
      size_t used = 0;
      size_t array_count = 0;
  };
  
  #ifdef REALM_DEBUG
  template <class C, class T>
  std::basic_ostream<C, T>& operator<<(std::basic_ostream<C, T>& out, MemStats stats);
  #endif
  
  
  // Stores a value obtained from Array::get(). It is a ref if the least
  // significant bit is clear, otherwise it is a tagged integer. A tagged interger
  // is obtained from a logical integer value by left shifting by one bit position
  // (multiplying by two), and then setting the least significant bit to
  // one. Clearly, this means that the maximum value that can be stored as a
  // tagged integer is 2**63 - 1.
  class RefOrTagged {
  public:
      bool is_ref() const noexcept;
      bool is_tagged() const noexcept;
      ref_type get_as_ref() const noexcept;
      uint_fast64_t get_as_int() const noexcept;
  
      static RefOrTagged make_ref(ref_type) noexcept;
      static RefOrTagged make_tagged(uint_fast64_t) noexcept;
  
  private:
      int_fast64_t m_value;
      RefOrTagged(int_fast64_t) noexcept;
      friend class Array;
  };
  
  
  struct TreeInsertBase {
      size_t m_split_offset;
      size_t m_split_size;
  };
  template <class T>
  class QueryStateFindAll : public QueryStateBase {
  public:
      explicit QueryStateFindAll(T& keys, size_t limit = -1)
          : QueryStateBase(limit)
          , m_keys(keys)
      {
      }
      bool match(size_t index, Mixed) noexcept final;
  
  private:
      T& m_keys;
  };
  
  class QueryStateFindFirst : public QueryStateBase {
  public:
      size_t m_state = realm::not_found;
      QueryStateFindFirst()
          : QueryStateBase(1)
      {
      }
      bool match(size_t index, Mixed) noexcept final
      {
          m_match_count++;
          m_state = index;
          return false;
      }
  };
  
  class Array : public Node, public ArrayParent {
  public:
      //    void state_init(int action, QueryState *state);
      //    bool match(int action, size_t index, int64_t value, QueryState *state);
  
      /// Create an array accessor in the unattached state.
      explicit Array(Allocator& allocator) noexcept
          : Node(allocator)
      {
      }
  
      ~Array() noexcept override {}
  
      /// Create a new integer array of the specified type and size, and filled
      /// with the specified value, and attach this accessor to it. This does not
      /// modify the parent reference information of this accessor.
      ///
      /// Note that the caller assumes ownership of the allocated underlying
      /// node. It is not owned by the accessor.
      void create(Type, bool context_flag = false, size_t size = 0, int_fast64_t value = 0);
  
      /// Reinitialize this array accessor to point to the specified new
      /// underlying memory. This does not modify the parent reference information
      /// of this accessor.
      void init_from_ref(ref_type ref) noexcept
      {
          REALM_ASSERT_DEBUG(ref);
          char* header = m_alloc.translate(ref);
          init_from_mem(MemRef(header, ref, m_alloc));
      }
  
      /// Same as init_from_ref(ref_type) but avoid the mapping of 'ref' to memory
      /// pointer.
      void init_from_mem(MemRef) noexcept;
  
      /// Same as `init_from_ref(get_ref_from_parent())`.
      void init_from_parent() noexcept
      {
          ref_type ref = get_ref_from_parent();
          init_from_ref(ref);
      }
  
      /// Called in the context of Group::commit() to ensure that attached
      /// accessors stay valid across a commit. Please note that this works only
      /// for non-transactional commits. Accessors obtained during a transaction
      /// are always detached when the transaction ends.
      void update_from_parent() noexcept;
  
      /// Change the type of an already attached array node.
      ///
      /// The effect of calling this function on an unattached accessor is
      /// undefined.
      void set_type(Type);
  
      /// Construct a complete copy of this array (including its subarrays) using
      /// the specified target allocator and return just the reference to the
      /// underlying memory.
      MemRef clone_deep(Allocator& target_alloc) const;
  
      /// Construct an empty integer array of the specified type, and return just
      /// the reference to the underlying memory.
      static MemRef create_empty_array(Type, bool context_flag, Allocator&);
  
      /// Construct an integer array of the specified type and size, and return
      /// just the reference to the underlying memory. All elements will be
      /// initialized to the specified value.
      static MemRef create_array(Type, bool context_flag, size_t size, int_fast64_t value, Allocator&);
  
      Type get_type() const noexcept;
  
      /// The meaning of 'width' depends on the context in which this
      /// array is used.
      size_t get_width() const noexcept
      {
          REALM_ASSERT_3(m_width, ==, get_width_from_header(get_header()));
          return m_width;
      }
  
      static void add_to_column(IntegerColumn* column, int64_t value);
      static void add_to_column(KeyColumn* column, int64_t value);
  
      void insert(size_t ndx, int_fast64_t value);
      void add(int_fast64_t value);
  
      // Used from ArrayBlob
      size_t blob_size() const noexcept;
      ref_type blob_replace(size_t begin, size_t end, const char* data, size_t data_size, bool add_zero_term);
  
      /// This function is guaranteed to not throw if the current width is
      /// sufficient for the specified value (e.g. if you have called
      /// ensure_minimum_width(value)) and get_alloc().is_read_only(get_ref())
      /// returns false (noexcept:array-set). Note that for a value of zero, the
      /// first criterion is trivially satisfied.
      void set(size_t ndx, int64_t value);
  
      void set_as_ref(size_t ndx, ref_type ref);
  
      template <size_t w>
      void set(size_t ndx, int64_t value);
  
      int64_t get(size_t ndx) const noexcept;
  
      template <size_t w>
      int64_t get(size_t ndx) const noexcept;
  
      void get_chunk(size_t ndx, int64_t res[8]) const noexcept;
  
      template <size_t w>
      void get_chunk(size_t ndx, int64_t res[8]) const noexcept;
  
      ref_type get_as_ref(size_t ndx) const noexcept;
  
      RefOrTagged get_as_ref_or_tagged(size_t ndx) const noexcept;
      void set(size_t ndx, RefOrTagged);
      void add(RefOrTagged);
      void ensure_minimum_width(RefOrTagged);
  
      int64_t front() const noexcept;
      int64_t back() const noexcept;
  
      void alloc(size_t init_size, size_t new_width)
      {
          REALM_ASSERT_3(m_width, ==, get_width_from_header(get_header()));
          REALM_ASSERT_3(m_size, ==, get_size_from_header(get_header()));
          Node::alloc(init_size, new_width);
          update_width_cache_from_header();
      }
  
      /// Remove the element at the specified index, and move elements at higher
      /// indexes to the next lower index.
      ///
      /// This function does **not** destroy removed subarrays. That is, if the
      /// erased element is a 'ref' pointing to a subarray, then that subarray
      /// will not be destroyed automatically.
      ///
      /// This function guarantees that no exceptions will be thrown if
      /// get_alloc().is_read_only(get_ref()) would return false before the
      /// call. This is automatically guaranteed if the array is used in a
      /// non-transactional context, or if the array has already been successfully
      /// modified within the current write transaction.
      void erase(size_t ndx);
  
      /// Same as erase(size_t), but remove all elements in the specified
      /// range.
      ///
      /// Please note that this function does **not** destroy removed subarrays.
      ///
      /// This function guarantees that no exceptions will be thrown if
      /// get_alloc().is_read_only(get_ref()) would return false before the call.
      void erase(size_t begin, size_t end);
  
      /// Reduce the size of this array to the specified number of elements. It is
      /// an error to specify a size that is greater than the current size of this
      /// array. The effect of doing so is undefined. This is just a shorthand for
      /// calling the ranged erase() function with appropriate arguments.
      ///
      /// Please note that this function does **not** destroy removed
      /// subarrays. See clear_and_destroy_children() for an alternative.
      ///
      /// This function guarantees that no exceptions will be thrown if
      /// get_alloc().is_read_only(get_ref()) would return false before the call.
      void truncate(size_t new_size);
  
      /// Reduce the size of this array to the specified number of elements. It is
      /// an error to specify a size that is greater than the current size of this
      /// array. The effect of doing so is undefined. Subarrays will be destroyed
      /// recursively, as if by a call to `destroy_deep(subarray_ref, alloc)`.
      ///
      /// This function is guaranteed not to throw if
      /// get_alloc().is_read_only(get_ref()) returns false.
      void truncate_and_destroy_children(size_t new_size);
  
      /// Remove every element from this array. This is just a shorthand for
      /// calling truncate(0).
      ///
      /// Please note that this function does **not** destroy removed
      /// subarrays. See clear_and_destroy_children() for an alternative.
      ///
      /// This function guarantees that no exceptions will be thrown if
      /// get_alloc().is_read_only(get_ref()) would return false before the call.
      void clear();
  
      /// Remove every element in this array. Subarrays will be destroyed
      /// recursively, as if by a call to `destroy_deep(subarray_ref,
      /// alloc)`. This is just a shorthand for calling
      /// truncate_and_destroy_children(0).
      ///
      /// This function guarantees that no exceptions will be thrown if
      /// get_alloc().is_read_only(get_ref()) would return false before the call.
      void clear_and_destroy_children();
  
      /// If neccessary, expand the representation so that it can store the
      /// specified value.
      void ensure_minimum_width(int_fast64_t value);
  
      /// This one may change the represenation of the array, so be carefull if
      /// you call it after ensure_minimum_width().
      void set_all_to_zero();
  
      /// Add \a diff to the element at the specified index.
      void adjust(size_t ndx, int_fast64_t diff);
  
      /// Add \a diff to all the elements in the specified index range.
      void adjust(size_t begin, size_t end, int_fast64_t diff);
  
      //@{
      /// This is similar in spirit to std::move() from `<algorithm>`.
      /// \a dest_begin must not be in the range [`begin`,`end`)
      ///
      /// This function is guaranteed to not throw if
      /// `get_alloc().is_read_only(get_ref())` returns false.
      void move(size_t begin, size_t end, size_t dest_begin);
      //@}
  
      // Move elements from ndx and above to another array
      void move(Array& dst, size_t ndx);
  
      //@{
      /// Find the lower/upper bound of the specified value in a sequence of
      /// integers which must already be sorted ascendingly.
      ///
      /// For an integer value '`v`', lower_bound_int(v) returns the index '`l`'
      /// of the first element such that `get(l) &ge; v`, and upper_bound_int(v)
      /// returns the index '`u`' of the first element such that `get(u) &gt;
      /// v`. In both cases, if no such element is found, the returned value is
      /// the number of elements in the array.
      ///
      ///     3 3 3 4 4 4 5 6 7 9 9 9
      ///     ^     ^     ^     ^     ^
      ///     |     |     |     |     |
      ///     |     |     |     |      -- Lower and upper bound of 15
      ///     |     |     |     |
      ///     |     |     |      -- Lower and upper bound of 8
      ///     |     |     |
      ///     |     |      -- Upper bound of 4
      ///     |     |
      ///     |      -- Lower bound of 4
      ///     |
      ///      -- Lower and upper bound of 1
      ///
      /// These functions are similar to std::lower_bound() and
      /// std::upper_bound().
      ///
      /// We currently use binary search. See for example
      /// http://www.tbray.org/ongoing/When/200x/2003/03/22/Binary.
      ///
      /// FIXME: It may be worth considering if overall efficiency can be improved
      /// by doing a linear search for short sequences.
      size_t lower_bound_int(int64_t value) const noexcept;
      size_t upper_bound_int(int64_t value) const noexcept;
      //@}
  
      int64_t get_sum(size_t start = 0, size_t end = size_t(-1)) const
      {
          return sum(start, end);
      }
  
      /// This information is guaranteed to be cached in the array accessor.
      bool is_inner_bptree_node() const noexcept;
  
      /// Returns true if type is either type_HasRefs or type_InnerColumnNode.
      ///
      /// This information is guaranteed to be cached in the array accessor.
      bool has_refs() const noexcept;
      void set_has_refs(bool) noexcept;
  
      /// This information is guaranteed to be cached in the array accessor.
      ///
      /// Columns and indexes can use the context bit to differentiate leaf types.
      bool get_context_flag() const noexcept;
      void set_context_flag(bool) noexcept;
  
      /// Recursively destroy children (as if calling
      /// clear_and_destroy_children()), then put this accessor into the detached
      /// state (as if calling detach()), then free the allocated memory. If this
      /// accessor is already in the detached state, this function has no effect
      /// (idempotency).
      void destroy_deep() noexcept;
  
      /// Shorthand for `destroy_deep(MemRef(ref, alloc), alloc)`.
      static void destroy_deep(ref_type ref, Allocator& alloc) noexcept;
  
      /// Destroy the specified array node and all of its children, recursively.
      ///
      /// This is done by freeing the specified array node after calling
      /// destroy_deep() for every contained 'ref' element.
      static void destroy_deep(MemRef, Allocator&) noexcept;
  
      // Clone deep
      static MemRef clone(MemRef, Allocator& from_alloc, Allocator& target_alloc);
  
      // Serialization
  
      /// Returns the ref (position in the target stream) of the written copy of
      /// this array, or the ref of the original array if \a only_if_modified is
      /// true, and this array is unmodified (Alloc::is_read_only()).
      ///
      /// The number of bytes that will be written by a non-recursive invocation
      /// of this function is exactly the number returned by get_byte_size().
      ///
      /// \param out The destination stream (writer).
      ///
      /// \param deep If true, recursively write out subarrays, but still subject
      /// to \a only_if_modified.
      ///
      /// \param only_if_modified Set to `false` to always write, or to `true` to
      /// only write the array if it has been modified.
      ref_type write(_impl::ArrayWriterBase& out, bool deep, bool only_if_modified) const;
  
      /// Same as non-static write() with `deep` set to true. This is for the
      /// cases where you do not already have an array accessor available.
      static ref_type write(ref_type, Allocator&, _impl::ArrayWriterBase&, bool only_if_modified);
  
      // Main finding function - used for find_first, find_all, sum, max, min, etc.
      bool find(int cond, int64_t value, size_t start, size_t end, size_t baseindex, QueryStateBase* state) const;
  
      template <class cond, class Callback>
      bool find(int64_t value, size_t start, size_t end, size_t baseindex, QueryStateBase* state,
                Callback callback) const;
  
      // Wrappers for backwards compatibility and for simple use without
      // setting up state initialization etc
      template <class cond>
      size_t find_first(int64_t value, size_t start = 0, size_t end = size_t(-1)) const;
  
      void find_all(IntegerColumn* result, int64_t value, size_t col_offset = 0, size_t begin = 0,
                    size_t end = size_t(-1)) const;
  
      size_t find_first(int64_t value, size_t begin = 0, size_t end = size_t(-1)) const;
  
      // Non-SSE find for the four functions Equal/NotEqual/Less/Greater
      template <class cond, size_t bitwidth, class Callback>
      bool compare(int64_t value, size_t start, size_t end, size_t baseindex, QueryStateBase* state,
                   Callback callback) const;
  
      // Non-SSE find for Equal/NotEqual
      template <bool eq, size_t width, class Callback>
      inline bool compare_equality(int64_t value, size_t start, size_t end, size_t baseindex, QueryStateBase* state,
                                   Callback callback) const;
  
      // Non-SSE find for Less/Greater
      template <bool gt, size_t bitwidth, class Callback>
      bool compare_relation(int64_t value, size_t start, size_t end, size_t baseindex, QueryStateBase* state,
                            Callback callback) const;
  
      template <class cond, size_t foreign_width, class Callback, size_t width>
      bool compare_leafs_4(const Array* foreign, size_t start, size_t end, size_t baseindex, QueryStateBase* state,
                           Callback callback) const;
  
      template <class cond, class Callback>
      bool compare_leafs(const Array* foreign, size_t start, size_t end, size_t baseindex, QueryStateBase* state,
                         Callback callback) const;
  
      template <class cond, size_t width, class Callback>
      bool compare_leafs(const Array* foreign, size_t start, size_t end, size_t baseindex, QueryStateBase* state,
                         Callback callback) const;
  
  // SSE find for the four functions Equal/NotEqual/Less/Greater
  #ifdef REALM_COMPILER_SSE
      template <class cond, size_t width, class Callback>
      bool find_sse(int64_t value, __m128i* data, size_t items, QueryStateBase* state, size_t baseindex,
                    Callback callback) const;
  
      template <class cond, size_t width, class Callback>
      REALM_FORCEINLINE bool find_sse_intern(__m128i* action_data, __m128i* data, size_t items, QueryStateBase* state,
                                             size_t baseindex, Callback callback) const;
  
  #endif
  
      template <size_t width>
      inline bool test_zero(uint64_t value) const; // Tests value for 0-elements
  
      template <bool eq, size_t width>
      size_t find_zero(uint64_t v) const; // Finds position of 0/non-zero element
  
      template <size_t width, bool zero>
      uint64_t cascade(uint64_t a) const; // Sets lowermost bits of zero or non-zero elements
  
      template <bool gt, size_t width>
      int64_t
      find_gtlt_magic(int64_t v) const; // Compute magic constant needed for searching for value 'v' using bit hacks
  
      template <size_t width>
      inline int64_t lower_bits() const; // Return chunk with lower bit set in each element
  
      size_t first_set_bit(unsigned int v) const;
      size_t first_set_bit64(int64_t v) const;
  
      template <size_t w>
      int64_t get_universal(const char* const data, const size_t ndx) const;
  
      // Find value greater/less in 64-bit chunk - only works for positive values
      template <bool gt, size_t width, class Callback>
      bool find_gtlt_fast(uint64_t chunk, uint64_t magic, QueryStateBase* state, size_t baseindex,
                          Callback callback) const;
  
      // Find value greater/less in 64-bit chunk - no constraints
      template <bool gt, size_t width, class Callback>
      bool find_gtlt(int64_t v, uint64_t chunk, QueryStateBase* state, size_t baseindex, Callback callback) const;
  
      /// Get the specified element without the cost of constructing an
      /// array instance. If an array instance is already available, or
      /// you need to get multiple values, then this method will be
      /// slower.
      static int_fast64_t get(const char* header, size_t ndx) noexcept;
  
      /// Like get(const char*, size_t) but gets two consecutive
      /// elements.
      static std::pair<int64_t, int64_t> get_two(const char* header, size_t ndx) noexcept;
  
      static void get_three(const char* data, size_t ndx, ref_type& v0, ref_type& v1, ref_type& v2) noexcept;
  
      static RefOrTagged get_as_ref_or_tagged(const char* header, size_t ndx) noexcept
      {
          return get(header, ndx);
      }
  
      /// Get the number of bytes currently in use by this array. This
      /// includes the array header, but it does not include allocated
      /// bytes corresponding to excess capacity. The result is
      /// guaranteed to be a multiple of 8 (i.e., 64-bit aligned).
      ///
      /// This number is exactly the number of bytes that will be
      /// written by a non-recursive invocation of write().
      size_t get_byte_size() const noexcept;
  
      /// Get the maximum number of bytes that can be written by a
      /// non-recursive invocation of write() on an array with the
      /// specified number of elements, that is, the maximum value that
      /// can be returned by get_byte_size().
      static size_t get_max_byte_size(size_t num_elems) noexcept;
  
      /// FIXME: Belongs in IntegerArray
      static size_t calc_aligned_byte_size(size_t size, int width);
  
      class MemUsageHandler {
      public:
          virtual void handle(ref_type ref, size_t allocated, size_t used) = 0;
      };
  
      void report_memory_usage(MemUsageHandler&) const;
  
      void stats(MemStats& stats_dest) const noexcept;
  
      void verify() const;
  
      Array& operator=(const Array&) = delete; // not allowed
      Array(const Array&) = delete;            // not allowed
  
  protected:
      // This returns the minimum value ("lower bound") of the representable values
      // for the given bit width. Valid widths are 0, 1, 2, 4, 8, 16, 32, and 64.
      static constexpr int_fast64_t lbound_for_width(size_t width) noexcept;
  
      // This returns the maximum value ("inclusive upper bound") of the representable values
      // for the given bit width. Valid widths are 0, 1, 2, 4, 8, 16, 32, and 64.
      static constexpr int_fast64_t ubound_for_width(size_t width) noexcept;
  
  private:
      void update_width_cache_from_header() noexcept;
  
      void do_ensure_minimum_width(int_fast64_t);
  
      int64_t sum(size_t start, size_t end) const;
      size_t count(int64_t value) const noexcept;
  
      bool maximum(int64_t& result, size_t start = 0, size_t end = size_t(-1), size_t* return_ndx = nullptr) const;
  
      bool minimum(int64_t& result, size_t start = 0, size_t end = size_t(-1), size_t* return_ndx = nullptr) const;
  
      template <size_t w>
      int64_t sum(size_t start, size_t end) const;
  
      template <bool max, size_t w>
      bool minmax(int64_t& result, size_t start, size_t end, size_t* return_ndx) const;
  
  protected:
      /// It is an error to specify a non-zero value unless the width
      /// type is wtype_Bits. It is also an error to specify a non-zero
      /// size if the width type is wtype_Ignore.
      static MemRef create(Type, bool context_flag, WidthType, size_t size, int_fast64_t value, Allocator&);
  
      // Overriding method in ArrayParent
      void update_child_ref(size_t, ref_type) override;
  
      // Overriding method in ArrayParent
      ref_type get_child_ref(size_t) const noexcept override;
  
      void destroy_children(size_t offset = 0) noexcept;
  
  protected:
      // Getters and Setters for adaptive-packed arrays
      typedef int64_t (Array::*Getter)(size_t) const; // Note: getters must not throw
      typedef void (Array::*Setter)(size_t, int64_t);
      typedef bool (Array::*Finder)(int64_t, size_t, size_t, size_t, QueryStateBase*) const;
      typedef void (Array::*ChunkGetter)(size_t, int64_t res[8]) const; // Note: getters must not throw
  
      struct VTable {
          Getter getter;
          ChunkGetter chunk_getter;
          Setter setter;
          Finder finder[cond_VTABLE_FINDER_COUNT]; // one for each active function pointer
      };
      template <size_t w>
      struct VTableForWidth;
  
      // This is the one installed into the m_vtable->finder slots.
      template <class cond, size_t bitwidth>
      bool find_vtable(int64_t value, size_t start, size_t end, size_t baseindex, QueryStateBase* state) const;
  
  
  protected:
      /// Takes a 64-bit value and returns the minimum number of bits needed
      /// to fit the value. For alignment this is rounded up to nearest
      /// log2. Posssible results {0, 1, 2, 4, 8, 16, 32, 64}
      static size_t bit_width(int64_t value);
  
      void report_memory_usage_2(MemUsageHandler&) const;
  
  private:
      Getter m_getter = nullptr; // cached to avoid indirection
      const VTable* m_vtable = nullptr;
  
  protected:
      uint_least8_t m_width = 0; // Size of an element (meaning depend on type of array).
      int64_t m_lbound;          // min number that can be stored with current m_width
      int64_t m_ubound;          // max number that can be stored with current m_width
  
      bool m_is_inner_bptree_node; // This array is an inner node of B+-tree.
      bool m_has_refs;             // Elements whose first bit is zero are refs to subarrays.
      bool m_context_flag;         // Meaning depends on context.
  
  private:
      ref_type do_write_shallow(_impl::ArrayWriterBase&) const;
      ref_type do_write_deep(_impl::ArrayWriterBase&, bool only_if_modified) const;
  
      friend class Allocator;
      friend class SlabAlloc;
      friend class GroupWriter;
  
      // Optimized implementation for release mode
      template <class cond, size_t bitwidth, class Callback>
      bool find_optimized(int64_t value, size_t start, size_t end, size_t baseindex, QueryStateBase* state,
                          Callback callback) const;
  
  protected:
      // Called for each search result
      template <class Callback>
      bool find_action(size_t index, util::Optional<int64_t> value, QueryStateBase* state, Callback callback) const;
  
      bool find_action_pattern(size_t index, uint64_t pattern, QueryStateBase* state) const;
      template <size_t bitwidth, class Callback>
      bool find_all_will_match(size_t start, size_t end, size_t baseindex, QueryStateBase* state,
                               Callback callback) const;
  };
  
  // Implementation:
  
  
  constexpr inline int_fast64_t Array::lbound_for_width(size_t width) noexcept
  {
      if (width == 32) {
          return -0x80000000LL;
      }
      else if (width == 16) {
          return -0x8000LL;
      }
      else if (width < 8) {
          return 0;
      }
      else if (width == 8) {
          return -0x80LL;
      }
      else if (width == 64) {
          return -0x8000000000000000LL;
      }
      else {
          REALM_UNREACHABLE();
      }
  }
  
  constexpr inline int_fast64_t Array::ubound_for_width(size_t width) noexcept
  {
      if (width == 32) {
          return 0x7FFFFFFFLL;
      }
      else if (width == 16) {
          return 0x7FFFLL;
      }
      else if (width == 0) {
          return 0;
      }
      else if (width == 1) {
          return 1;
      }
      else if (width == 2) {
          return 3;
      }
      else if (width == 4) {
          return 15;
      }
      else if (width == 8) {
          return 0x7FLL;
      }
      else if (width == 64) {
          return 0x7FFFFFFFFFFFFFFFLL;
      }
      else {
          REALM_UNREACHABLE();
      }
  }
  
  inline bool RefOrTagged::is_ref() const noexcept
  {
      return (m_value & 1) == 0;
  }
  
  inline bool RefOrTagged::is_tagged() const noexcept
  {
      return !is_ref();
  }
  
  inline ref_type RefOrTagged::get_as_ref() const noexcept
  {
      // to_ref() is defined in <alloc.hpp>
      return to_ref(m_value);
  }
  
  inline uint_fast64_t RefOrTagged::get_as_int() const noexcept
  {
      // The bitwise AND is there in case uint_fast64_t is wider than 64 bits.
      return (uint_fast64_t(m_value) & 0xFFFFFFFFFFFFFFFFULL) >> 1;
  }
  
  inline RefOrTagged RefOrTagged::make_ref(ref_type ref) noexcept
  {
      // from_ref() is defined in <alloc.hpp>
      int_fast64_t value = from_ref(ref);
      return RefOrTagged(value);
  }
  
  inline RefOrTagged RefOrTagged::make_tagged(uint_fast64_t i) noexcept
  {
      REALM_ASSERT(i < (1ULL << 63));
      return RefOrTagged((i << 1) | 1);
  }
  
  inline RefOrTagged::RefOrTagged(int_fast64_t value) noexcept
      : m_value(value)
  {
  }
  
  inline void Array::create(Type type, bool context_flag, size_t length, int_fast64_t value)
  {
      MemRef mem = create_array(type, context_flag, length, value, m_alloc); // Throws
      init_from_mem(mem);
  }
  
  
  inline Array::Type Array::get_type() const noexcept
  {
      if (m_is_inner_bptree_node) {
          REALM_ASSERT_DEBUG(m_has_refs);
          return type_InnerBptreeNode;
      }
      if (m_has_refs)
          return type_HasRefs;
      return type_Normal;
  }
  
  
  inline void Array::get_chunk(size_t ndx, int64_t res[8]) const noexcept
  {
      REALM_ASSERT_DEBUG(ndx < m_size);
      (this->*(m_vtable->chunk_getter))(ndx, res);
  }
  
  
  inline int64_t Array::get(size_t ndx) const noexcept
  {
      REALM_ASSERT_DEBUG(is_attached());
      REALM_ASSERT_DEBUG(ndx < m_size);
      return (this->*m_getter)(ndx);
  
      // Two ideas that are not efficient but may be worth looking into again:
      /*
          // Assume correct width is found early in REALM_TEMPEX, which is the case for B tree offsets that
          // are probably either 2^16 long. Turns out to be 25% faster if found immediately, but 50-300% slower
          // if found later
          REALM_TEMPEX(return get, (ndx));
      */
      /*
          // Slightly slower in both of the if-cases. Also needs an matchcount m_size check too, to avoid
          // reading beyond array.
          if (m_width >= 8 && m_size > ndx + 7)
              return get<64>(ndx >> m_shift) & m_widthmask;
          else
              return (this->*(m_vtable->getter))(ndx);
      */
  }
  
  inline int64_t Array::front() const noexcept
  {
      return get(0);
  }
  
  inline int64_t Array::back() const noexcept
  {
      return get(m_size - 1);
  }
  
  inline ref_type Array::get_as_ref(size_t ndx) const noexcept
  {
      REALM_ASSERT_DEBUG(is_attached());
      REALM_ASSERT_DEBUG(m_has_refs);
      int64_t v = get(ndx);
      return to_ref(v);
  }
  
  inline RefOrTagged Array::get_as_ref_or_tagged(size_t ndx) const noexcept
  {
      REALM_ASSERT(has_refs());
      return RefOrTagged(get(ndx));
  }
  
  inline void Array::set(size_t ndx, RefOrTagged ref_or_tagged)
  {
      REALM_ASSERT(has_refs());
      set(ndx, ref_or_tagged.m_value); // Throws
  }
  
  inline void Array::add(RefOrTagged ref_or_tagged)
  {
      REALM_ASSERT(has_refs());
      add(ref_or_tagged.m_value); // Throws
  }
  
  inline void Array::ensure_minimum_width(RefOrTagged ref_or_tagged)
  {
      REALM_ASSERT(has_refs());
      ensure_minimum_width(ref_or_tagged.m_value); // Throws
  }
  
  inline bool Array::is_inner_bptree_node() const noexcept
  {
      return m_is_inner_bptree_node;
  }
  
  inline bool Array::has_refs() const noexcept
  {
      return m_has_refs;
  }
  
  inline void Array::set_has_refs(bool value) noexcept
  {
      if (m_has_refs != value) {
          REALM_ASSERT(!is_read_only());
          m_has_refs = value;
          set_hasrefs_in_header(value, get_header());
      }
  }
  
  inline bool Array::get_context_flag() const noexcept
  {
      return m_context_flag;
  }
  
  inline void Array::set_context_flag(bool value) noexcept
  {
      if (m_context_flag != value) {
          copy_on_write();
          m_context_flag = value;
          set_context_flag_in_header(value, get_header());
      }
  }
  
  inline void Array::destroy_deep() noexcept
  {
      if (!is_attached())
          return;
  
      if (m_has_refs)
          destroy_children();
  
      char* header = get_header_from_data(m_data);
      m_alloc.free_(m_ref, header);
      m_data = nullptr;
  }
  
  inline ref_type Array::write(_impl::ArrayWriterBase& out, bool deep, bool only_if_modified) const
  {
      REALM_ASSERT(is_attached());
  
      if (only_if_modified && m_alloc.is_read_only(m_ref))
          return m_ref;
  
      if (!deep || !m_has_refs)
          return do_write_shallow(out); // Throws
  
      return do_write_deep(out, only_if_modified); // Throws
  }
  
  inline ref_type Array::write(ref_type ref, Allocator& alloc, _impl::ArrayWriterBase& out, bool only_if_modified)
  {
      if (only_if_modified && alloc.is_read_only(ref))
          return ref;
  
      Array array(alloc);
      array.init_from_ref(ref);
  
      if (!array.m_has_refs)
          return array.do_write_shallow(out); // Throws
  
      return array.do_write_deep(out, only_if_modified); // Throws
  }
  
  inline void Array::add(int_fast64_t value)
  {
      insert(m_size, value);
  }
  
  inline void Array::erase(size_t ndx)
  {
      // This can throw, but only if array is currently in read-only
      // memory.
      move(ndx + 1, size(), ndx);
  
      // Update size (also in header)
      --m_size;
      set_header_size(m_size);
  }
  
  
  inline void Array::erase(size_t begin, size_t end)
  {
      if (begin != end) {
          // This can throw, but only if array is currently in read-only memory.
          move(end, size(), begin); // Throws
  
          // Update size (also in header)
          m_size -= end - begin;
          set_header_size(m_size);
      }
  }
  
  inline void Array::clear()
  {
      truncate(0); // Throws
  }
  
  inline void Array::clear_and_destroy_children()
  {
      truncate_and_destroy_children(0);
  }
  
  inline void Array::destroy_deep(ref_type ref, Allocator& alloc) noexcept
  {
      destroy_deep(MemRef(ref, alloc), alloc);
  }
  
  inline void Array::destroy_deep(MemRef mem, Allocator& alloc) noexcept
  {
      if (!get_hasrefs_from_header(mem.get_addr())) {
          alloc.free_(mem);
          return;
      }
      Array array(alloc);
      array.init_from_mem(mem);
      array.destroy_deep();
  }
  
  
  inline void Array::adjust(size_t ndx, int_fast64_t diff)
  {
      REALM_ASSERT_3(ndx, <=, m_size);
      if (diff != 0) {
          // FIXME: Should be optimized
          int_fast64_t v = get(ndx);
          set(ndx, int64_t(v + diff)); // Throws
      }
  }
  
  inline void Array::adjust(size_t begin, size_t end, int_fast64_t diff)
  {
      if (diff != 0) {
          // FIXME: Should be optimized
          for (size_t i = begin; i != end; ++i)
              adjust(i, diff); // Throws
      }
  }
  
  
  //-------------------------------------------------
  
  
  inline size_t Array::get_byte_size() const noexcept
  {
      const char* header = get_header_from_data(m_data);
      WidthType wtype = Node::get_wtype_from_header(header);
      size_t num_bytes = NodeHeader::calc_byte_size(wtype, m_size, m_width);
  
      REALM_ASSERT_7(m_alloc.is_read_only(m_ref), ==, true, ||, num_bytes, <=, get_capacity_from_header(header));
  
      return num_bytes;
  }
  
  
  //-------------------------------------------------
  
  inline MemRef Array::clone_deep(Allocator& target_alloc) const
  {
      char* header = get_header_from_data(m_data);
      return clone(MemRef(header, m_ref, m_alloc), m_alloc, target_alloc); // Throws
  }
  
  inline MemRef Array::create_empty_array(Type type, bool context_flag, Allocator& alloc)
  {
      size_t size = 0;
      int_fast64_t value = 0;
      return create_array(type, context_flag, size, value, alloc); // Throws
  }
  
  inline MemRef Array::create_array(Type type, bool context_flag, size_t size, int_fast64_t value, Allocator& alloc)
  {
      return create(type, context_flag, wtype_Bits, size, value, alloc); // Throws
  }
  
  inline size_t Array::get_max_byte_size(size_t num_elems) noexcept
  {
      int max_bytes_per_elem = 8;
      return header_size + num_elems * max_bytes_per_elem;
  }
  
  
  inline void Array::update_child_ref(size_t child_ndx, ref_type new_ref)
  {
      set(child_ndx, new_ref);
  }
  
  inline ref_type Array::get_child_ref(size_t child_ndx) const noexcept
  {
      return get_as_ref(child_ndx);
  }
  
  inline void Array::ensure_minimum_width(int_fast64_t value)
  {
      if (value >= m_lbound && value <= m_ubound)
          return;
      do_ensure_minimum_width(value);
  }
  
  
  //*************************************************************************************
  // Finding code                                                                       *
  //*************************************************************************************
  
  template <size_t w>
  int64_t Array::get(size_t ndx) const noexcept
  {
      return get_universal<w>(m_data, ndx);
  }
  
  template <size_t w>
  int64_t Array::get_universal(const char* data, size_t ndx) const
  {
      if (w == 0) {
          return 0;
      }
      else if (w == 1) {
          size_t offset = ndx >> 3;
          return (data[offset] >> (ndx & 7)) & 0x01;
      }
      else if (w == 2) {
          size_t offset = ndx >> 2;
          return (data[offset] >> ((ndx & 3) << 1)) & 0x03;
      }
      else if (w == 4) {
          size_t offset = ndx >> 1;
          return (data[offset] >> ((ndx & 1) << 2)) & 0x0F;
      }
      else if (w == 8) {
          return *reinterpret_cast<const signed char*>(data + ndx);
      }
      else if (w == 16) {
          size_t offset = ndx * 2;
          return *reinterpret_cast<const int16_t*>(data + offset);
      }
      else if (w == 32) {
          size_t offset = ndx * 4;
          return *reinterpret_cast<const int32_t*>(data + offset);
      }
      else if (w == 64) {
          size_t offset = ndx * 8;
          return *reinterpret_cast<const int64_t*>(data + offset);
      }
      else {
          REALM_ASSERT_DEBUG(false);
          return int64_t(-1);
      }
  }
  
  /*
  find() (calls find_optimized()) may call find_action for each search result.
  
  'index' tells the row index of a single match and 'value' tells its value. Return false to make Array-finder break
  its search or return true to let it continue until 'end' or 'limit'.
  */
  template <class Callback>
  bool Array::find_action(size_t index, util::Optional<int64_t>, QueryStateBase*, Callback callback) const
  {
      return callback(index);
  }
  
  // This function is used when there is no callback. Here we will just perform the action implemented in 'state'.
  template <>
  inline bool Array::find_action<std::nullptr_t>(size_t index, util::Optional<int64_t> value, QueryStateBase* state,
                                                 std::nullptr_t) const
  {
      return state->match(index, value);
  }
  
  /*
  find() (calls find_optimized()) may call find_action_pattern before calling find_action.
  
  'indexpattern' contains a 64-bit chunk of elements, each of 'width' bits in size where each element indicates a
  match if its lower bit is set, otherwise it indicates a non-match. 'index' tells the database row index of the
  first element. You must return true if you chose to 'consume' the chunk or false if not. If not, then Array-finder
  will afterwards call match() successive times with pattern == false.
  
  Array-finder decides itself if - and when - it wants to pass you an indexpattern. It depends on array bit width, match
  frequency, and whether the arithemetic and computations for the given search criteria makes it feasible to construct
  such a pattern.
  */
  inline bool Array::find_action_pattern(size_t /*index*/, uint64_t /*pattern*/, QueryStateBase* /*st*/) const
  {
      // return st->match_pattern(index, pattern); FIXME: Use for act_Count
      return false;
  }
  
  
  template <size_t width, bool zero>
  uint64_t Array::cascade(uint64_t a) const
  {
      // Takes a chunk of values as argument and sets the least significant bit for each
      // element which is zero or non-zero, depending on the template parameter.
      // Example for zero=true:
      // width == 4 and a = 0x5fd07a107610f610
      // will return:       0x0001000100010001
  
      // static values needed for fast population count
      const uint64_t m1 = 0x5555555555555555ULL;
  
      if (width == 1) {
          return zero ? ~a : a;
      }
      else if (width == 2) {
          // Masks to avoid spillover between segments in cascades
          const uint64_t c1 = ~0ULL / 0x3 * 0x1;
  
          a |= (a >> 1) & c1; // cascade ones in non-zeroed segments
          a &= m1;            // isolate single bit in each segment
          if (zero)
              a ^= m1; // reverse isolated bits if checking for zeroed segments
  
          return a;
      }
      else if (width == 4) {
          const uint64_t m = ~0ULL / 0xF * 0x1;
  
          // Masks to avoid spillover between segments in cascades
          const uint64_t c1 = ~0ULL / 0xF * 0x7;
          const uint64_t c2 = ~0ULL / 0xF * 0x3;
  
          a |= (a >> 1) & c1; // cascade ones in non-zeroed segments
          a |= (a >> 2) & c2;
          a &= m; // isolate single bit in each segment
          if (zero)
              a ^= m; // reverse isolated bits if checking for zeroed segments
  
          return a;
      }
      else if (width == 8) {
          const uint64_t m = ~0ULL / 0xFF * 0x1;
  
          // Masks to avoid spillover between segments in cascades
          const uint64_t c1 = ~0ULL / 0xFF * 0x7F;
          const uint64_t c2 = ~0ULL / 0xFF * 0x3F;
          const uint64_t c3 = ~0ULL / 0xFF * 0x0F;
  
          a |= (a >> 1) & c1; // cascade ones in non-zeroed segments
          a |= (a >> 2) & c2;
          a |= (a >> 4) & c3;
          a &= m; // isolate single bit in each segment
          if (zero)
              a ^= m; // reverse isolated bits if checking for zeroed segments
  
          return a;
      }
      else if (width == 16) {
          const uint64_t m = ~0ULL / 0xFFFF * 0x1;
  
          // Masks to avoid spillover between segments in cascades
          const uint64_t c1 = ~0ULL / 0xFFFF * 0x7FFF;
          const uint64_t c2 = ~0ULL / 0xFFFF * 0x3FFF;
          const uint64_t c3 = ~0ULL / 0xFFFF * 0x0FFF;
          const uint64_t c4 = ~0ULL / 0xFFFF * 0x00FF;
  
          a |= (a >> 1) & c1; // cascade ones in non-zeroed segments
          a |= (a >> 2) & c2;
          a |= (a >> 4) & c3;
          a |= (a >> 8) & c4;
          a &= m; // isolate single bit in each segment
          if (zero)
              a ^= m; // reverse isolated bits if checking for zeroed segments
  
          return a;
      }
  
      else if (width == 32) {
          const uint64_t m = ~0ULL / 0xFFFFFFFF * 0x1;
  
          // Masks to avoid spillover between segments in cascades
          const uint64_t c1 = ~0ULL / 0xFFFFFFFF * 0x7FFFFFFF;
          const uint64_t c2 = ~0ULL / 0xFFFFFFFF * 0x3FFFFFFF;
          const uint64_t c3 = ~0ULL / 0xFFFFFFFF * 0x0FFFFFFF;
          const uint64_t c4 = ~0ULL / 0xFFFFFFFF * 0x00FFFFFF;
          const uint64_t c5 = ~0ULL / 0xFFFFFFFF * 0x0000FFFF;
  
          a |= (a >> 1) & c1; // cascade ones in non-zeroed segments
          a |= (a >> 2) & c2;
          a |= (a >> 4) & c3;
          a |= (a >> 8) & c4;
          a |= (a >> 16) & c5;
          a &= m; // isolate single bit in each segment
          if (zero)
              a ^= m; // reverse isolated bits if checking for zeroed segments
  
          return a;
      }
      else if (width == 64) {
          return (a == 0) == zero;
      }
      else {
          REALM_ASSERT_DEBUG(false);
          return uint64_t(-1);
      }
  }
  
  template <size_t bitwidth, class Callback>
  REALM_NOINLINE bool Array::find_all_will_match(size_t start2, size_t end, size_t baseindex, QueryStateBase* state,
                                                 Callback callback) const
  {
      size_t end2;
  
      if constexpr (!std::is_same_v<Callback, std::nullptr_t>)
          end2 = end;
      else {
          REALM_ASSERT_DEBUG(state->match_count() < state->limit());
          size_t process = state->limit() - state->match_count();
          end2 = end - start2 > process ? start2 + process : end;
      }
      for (; start2 < end2; start2++)
          if (!find_action(start2 + baseindex, get<bitwidth>(start2), state, callback))
              return false;
      return true;
  }
  
  // This is the main finding function for Array. Other finding functions are just wrappers around this one.
  // Search for 'value' using condition cond (Equal, NotEqual, Less, etc) and call find_action() or
  // find_action_pattern() for each match. Break and return if find_action() returns false or 'end' is reached.
  template <class cond, size_t bitwidth, class Callback>
  bool Array::find_optimized(int64_t value, size_t start, size_t end, size_t baseindex, QueryStateBase* state,
                             Callback callback) const
  {
      REALM_ASSERT_DEBUG(start <= m_size && (end <= m_size || end == size_t(-1)) && start <= end);
  
      size_t start2 = start;
      cond c;
  
      if (end == npos)
          end = m_size;
  
      if (!(m_size > start2 && start2 < end))
          return true;
  
      constexpr int64_t lbound = lbound_for_width(bitwidth);
      constexpr int64_t ubound = ubound_for_width(bitwidth);
  
      // Return immediately if no items in array can match (such as if cond == Greater && value == 100 &&
      // m_ubound == 15)
      if (!c.can_match(value, lbound, ubound))
          return true;
  
      // optimization if all items are guaranteed to match (such as cond == NotEqual && value == 100 && m_ubound == 15)
      if (c.will_match(value, lbound, ubound)) {
          return find_all_will_match<bitwidth, Callback>(start2, end, baseindex, state, callback);
      }
  
      // finder cannot handle this bitwidth
      REALM_ASSERT_3(m_width, !=, 0);
  
  #if defined(REALM_COMPILER_SSE)
      // Only use SSE if payload is at least one SSE chunk (128 bits) in size. Also note taht SSE doesn't support
      // Less-than comparison for 64-bit values.
      if ((!(std::is_same<cond, Less>::value && m_width == 64)) && end - start2 >= sizeof(__m128i) && m_width >= 8 &&
          (sseavx<42>() || (sseavx<30>() && std::is_same<cond, Equal>::value && m_width < 64))) {
  
          // find_sse() must start2 at 16-byte boundary, so search area before that using compare_equality()
          __m128i* const a = reinterpret_cast<__m128i*>(round_up(m_data + start2 * bitwidth / 8, sizeof(__m128i)));
          __m128i* const b = reinterpret_cast<__m128i*>(round_down(m_data + end * bitwidth / 8, sizeof(__m128i)));
  
          if (!compare<cond, bitwidth, Callback>(
                  value, start2, (reinterpret_cast<char*>(a) - m_data) * 8 / no0(bitwidth), baseindex, state, callback))
              return false;
  
          // Search aligned area with SSE
          if (b > a) {
              if (sseavx<42>()) {
                  if (!find_sse<cond, bitwidth, Callback>(
                          value, a, b - a, state,
                          baseindex + ((reinterpret_cast<char*>(a) - m_data) * 8 / no0(bitwidth)), callback))
                      return false;
              }
              else if (sseavx<30>()) {
  
                  if (!find_sse<Equal, bitwidth, Callback>(
                          value, a, b - a, state,
                          baseindex + ((reinterpret_cast<char*>(a) - m_data) * 8 / no0(bitwidth)), callback))
                      return false;
              }
          }
  
          // Search remainder with compare_equality()
          if (!compare<cond, bitwidth, Callback>(value, (reinterpret_cast<char*>(b) - m_data) * 8 / no0(bitwidth), end,
                                                 baseindex, state, callback))
              return false;
  
          return true;
      }
      else {
          return compare<cond, bitwidth, Callback>(value, start2, end, baseindex, state, callback);
      }
  #else
      return compare<cond, bitwidth, Callback>(value, start2, end, baseindex, state, callback);
  #endif
  }
  
  template <size_t width>
  inline int64_t Array::lower_bits() const
  {
      if (width == 1)
          return 0xFFFFFFFFFFFFFFFFULL;
      else if (width == 2)
          return 0x5555555555555555ULL;
      else if (width == 4)
          return 0x1111111111111111ULL;
      else if (width == 8)
          return 0x0101010101010101ULL;
      else if (width == 16)
          return 0x0001000100010001ULL;
      else if (width == 32)
          return 0x0000000100000001ULL;
      else if (width == 64)
          return 0x0000000000000001ULL;
      else {
          REALM_ASSERT_DEBUG(false);
          return int64_t(-1);
      }
  }
  
  // Tests if any chunk in 'value' is 0
  template <size_t width>
  inline bool Array::test_zero(uint64_t value) const
  {
      uint64_t hasZeroByte;
      uint64_t lower = lower_bits<width>();
      uint64_t upper = lower_bits<width>() * 1ULL << (width == 0 ? 0 : (width - 1ULL));
      hasZeroByte = (value - lower) & ~value & upper;
      return hasZeroByte != 0;
  }
  
  // Finds first zero (if eq == true) or non-zero (if eq == false) element in v and returns its position.
  // IMPORTANT: This function assumes that at least 1 item matches (test this with test_zero() or other means first)!
  template <bool eq, size_t width>
  size_t Array::find_zero(uint64_t v) const
  {
      size_t start = 0;
      uint64_t hasZeroByte;
      // Warning free way of computing (1ULL << width) - 1
      uint64_t mask = (width == 64 ? ~0ULL : ((1ULL << (width == 64 ? 0 : width)) - 1ULL));
  
      if (eq == (((v >> (width * start)) & mask) == 0)) {
          return 0;
      }
  
      // Bisection optimization, speeds up small bitwidths with high match frequency. More partions than 2 do NOT pay
      // off because the work done by test_zero() is wasted for the cases where the value exists in first half, but
      // useful if it exists in last half. Sweet spot turns out to be the widths and partitions below.
      if (width <= 8) {
          hasZeroByte = test_zero<width>(v | 0xffffffff00000000ULL);
          if (eq ? !hasZeroByte : (v & 0x00000000ffffffffULL) == 0) {
              // 00?? -> increasing
              start += 64 / no0(width) / 2;
              if (width <= 4) {
                  hasZeroByte = test_zero<width>(v | 0xffff000000000000ULL);
                  if (eq ? !hasZeroByte : (v & 0x0000ffffffffffffULL) == 0) {
                      // 000?
                      start += 64 / no0(width) / 4;
                  }
              }
          }
          else {
              if (width <= 4) {
                  // ??00
                  hasZeroByte = test_zero<width>(v | 0xffffffffffff0000ULL);
                  if (eq ? !hasZeroByte : (v & 0x000000000000ffffULL) == 0) {
                      // 0?00
                      start += 64 / no0(width) / 4;
                  }
              }
          }
      }
  
      while (eq == (((v >> (width * start)) & mask) != 0)) {
          // You must only call find_zero() if you are sure that at least 1 item matches
          REALM_ASSERT_3(start, <=, 8 * sizeof(v));
          start++;
      }
  
      return start;
  }
  
  // Generate a magic constant used for later bithacks
  template <bool gt, size_t width>
  int64_t Array::find_gtlt_magic(int64_t v) const
  {
      uint64_t mask1 =
          (width == 64
               ? ~0ULL
               : ((1ULL << (width == 64 ? 0 : width)) - 1ULL)); // Warning free way of computing (1ULL << width) - 1
      uint64_t mask2 = mask1 >> 1;
      uint64_t magic = gt ? (~0ULL / no0(mask1) * (mask2 - v)) : (~0ULL / no0(mask1) * v);
      return magic;
  }
  
  template <bool gt, size_t width, class Callback>
  bool Array::find_gtlt_fast(uint64_t chunk, uint64_t magic, QueryStateBase* state, size_t baseindex,
                             Callback callback) const
  {
      // Tests if a a chunk of values contains values that are greater (if gt == true) or less (if gt == false) than v.
      // Fast, but limited to work when all values in the chunk are positive.
  
      uint64_t mask1 =
          (width == 64
               ? ~0ULL
               : ((1ULL << (width == 64 ? 0 : width)) - 1ULL)); // Warning free way of computing (1ULL << width) - 1
      uint64_t mask2 = mask1 >> 1;
      uint64_t m = gt ? (((chunk + magic) | chunk) & ~0ULL / no0(mask1) * (mask2 + 1))
                      : ((chunk - magic) & ~chunk & ~0ULL / no0(mask1) * (mask2 + 1));
      size_t p = 0;
      while (m) {
          if (find_action_pattern(baseindex, m >> (no0(width) - 1), state))
              break; // consumed, so do not call find_action()
  
          size_t t = first_set_bit64(m) / no0(width);
          p += t;
          if (!find_action(p + baseindex, (chunk >> (p * width)) & mask1, state, callback))
              return false;
  
          if ((t + 1) * width == 64)
              m = 0;
          else
              m >>= (t + 1) * width;
          p++;
      }
  
      return true;
  }
  
  // clang-format off
  template <bool gt, size_t width, class Callback>
  bool Array::find_gtlt(int64_t v, uint64_t chunk, QueryStateBase* state, size_t baseindex, Callback callback) const
  {
      // Find items in 'chunk' that are greater (if gt == true) or smaller (if gt == false) than 'v'. Fixme, __forceinline can make it crash in vS2010 - find out why
      if constexpr (width == 1) {
          for (size_t i = 0; i < 64; ++i) {
              int64_t v2 = static_cast<int64_t>(chunk & 0x1);
              if (gt ? v2 > v : v2 < v) {
                  if (!find_action(i + baseindex, v2, state, callback)) {
                      return false;
                  }
              }
              chunk >>= 1;
          }
      }
      else if constexpr (width == 2) {
          for (size_t i = 0; i < 32; ++i) {
              int64_t v2 = static_cast<int64_t>(chunk & 0x3);
              if (gt ? v2 > v : v2 < v) {
                  if (!find_action(i + baseindex, v2, state, callback)) {
                      return false;
                  }
              }
              chunk >>= 2;
          }
      }
      else if constexpr (width == 4) {
          for (size_t i = 0; i < 16; ++i) {
              int64_t v2 = static_cast<int64_t>(chunk & 0xf);
              if (gt ? v2 > v : v2 < v) {
                  if (!find_action(i + baseindex, v2, state, callback)) {
                      return false;
                  }
              }
              chunk >>= 4;
          }
      }
      else if constexpr (width == 8) {
          for (size_t i = 0; i < 8; ++i) {
              int64_t v2 = static_cast<int64_t>(static_cast<int8_t>(chunk & 0xff));
              if (gt ? v2 > v : v2 < v) {
                  if (!find_action(i + baseindex, v2, state, callback)) {
                      return false;
                  }
              }
              chunk >>= 8;
          }
      }
      else if constexpr (width == 16) {
          for (size_t i = 0; i < 4; ++i) {
              int64_t v2 = static_cast<int64_t>(static_cast<int16_t>(chunk & 0xffff));
              if (gt ? v2 > v : v2 < v) {
                  if (!find_action(i + baseindex, v2, state, callback)) {
                      return false;
                  }
              }
              chunk >>= 16;
          }
      }
      else if constexpr (width == 32) {
          for (size_t i = 0; i < 2; ++i) {
              int64_t v2 = static_cast<int64_t>(static_cast<int32_t>(chunk & 0xffffffff));
              if (gt ? v2 > v : v2 < v) {
                  if (!find_action(i + baseindex, v2, state, callback)) {
                      return false;
                  }
              }
              chunk >>= 32;
          }
      }
      else if constexpr (width == 64) {
          int64_t v2 = static_cast<int64_t>(chunk);
          if (gt ? v2 > v : v2 < v) {
              return find_action(baseindex, v2, state, callback);
          }
      }
  
      static_cast<void>(state);
      static_cast<void>(callback);
      return true;
  }
  // clang-format on
  
  /// Find items in this Array that are equal (eq == true) or different (eq = false) from 'value'
  template <bool eq, size_t width, class Callback>
  inline bool Array::compare_equality(int64_t value, size_t start, size_t end, size_t baseindex, QueryStateBase* state,
                                      Callback callback) const
  {
      REALM_ASSERT_DEBUG(start <= m_size && (end <= m_size || end == size_t(-1)) && start <= end);
  
      size_t ee = round_up(start, 64 / no0(width));
      ee = ee > end ? end : ee;
      for (; start < ee; ++start)
          if (eq ? (get<width>(start) == value) : (get<width>(start) != value)) {
              if (!find_action(start + baseindex, get<width>(start), state, callback))
                  return false;
          }
  
      if (start >= end)
          return true;
  
      if (width != 32 && width != 64) {
          const int64_t* p = reinterpret_cast<const int64_t*>(m_data + (start * width / 8));
          const int64_t* const e = reinterpret_cast<int64_t*>(m_data + (end * width / 8)) - 1;
          const uint64_t mask =
              (width == 64
                   ? ~0ULL
                   : ((1ULL << (width == 64 ? 0 : width)) - 1ULL)); // Warning free way of computing (1ULL << width) - 1
          const uint64_t valuemask =
              ~0ULL / no0(mask) * (value & mask); // the "== ? :" is to avoid division by 0 compiler error
  
          while (p < e) {
              uint64_t chunk = *p;
              uint64_t v2 = chunk ^ valuemask;
              start = (p - reinterpret_cast<int64_t*>(m_data)) * 8 * 8 / no0(width);
              size_t a = 0;
  
              while (eq ? test_zero<width>(v2) : v2) {
  
                  if (find_action_pattern(start + baseindex, cascade<width, eq>(v2), state))
                      break; // consumed
  
                  size_t t = find_zero<eq, width>(v2);
                  a += t;
  
                  if (a >= 64 / no0(width))
                      break;
  
                  if (!find_action(a + start + baseindex, get<width>(start + a), state, callback))
                      return false;
                  v2 >>= (t + 1) * width;
                  a += 1;
              }
  
              ++p;
          }
  
          // Loop ended because we are near end or end of array. No need to optimize search in remainder in this case
          // because end of array means that
          // lots of search work has taken place prior to ending here. So time spent searching remainder is relatively
          // tiny
          start = (p - reinterpret_cast<int64_t*>(m_data)) * 8 * 8 / no0(width);
      }
  
      while (start < end) {
          if (eq ? get<width>(start) == value : get<width>(start) != value) {
              if (!find_action(start + baseindex, get<width>(start), state, callback))
                  return false;
          }
          ++start;
      }
  
      return true;
  }
  
  // There exists a couple of find() functions that take more or less template arguments. Always call the one that
  // takes as most as possible to get best performance.
  
  // This is the one installed into the m_vtable->finder slots.
  template <class cond, size_t bitwidth>
  bool Array::find_vtable(int64_t value, size_t start, size_t end, size_t baseindex, QueryStateBase* state) const
  {
      return find_optimized<cond, bitwidth>(value, start, end, baseindex, state, nullptr);
  }
  
  template <class cond, class Callback>
  bool Array::find(int64_t value, size_t start, size_t end, size_t baseindex, QueryStateBase* state,
                   Callback callback) const
  {
      REALM_TEMPEX3(return find_optimized, cond, m_width, Callback, (value, start, end, baseindex, state, callback));
  }
  
  #ifdef REALM_COMPILER_SSE
  // 'items' is the number of 16-byte SSE chunks. Returns index of packed element relative to first integer of first
  // chunk
  template <class cond, size_t width, class Callback>
  bool Array::find_sse(int64_t value, __m128i* data, size_t items, QueryStateBase* state, size_t baseindex,
                       Callback callback) const
  {
      __m128i search = {0};
  
      if (width == 8)
          search = _mm_set1_epi8(static_cast<char>(value));
      else if (width == 16)
          search = _mm_set1_epi16(static_cast<short int>(value));
      else if (width == 32)
          search = _mm_set1_epi32(static_cast<int>(value));
      else if (width == 64) {
          if (std::is_same<cond, Less>::value)
              REALM_ASSERT(false);
          else
              search = _mm_set_epi64x(value, value);
      }
  
      return find_sse_intern<cond, width, Callback>(data, &search, items, state, baseindex, callback);
  }
  
  // Compares packed action_data with packed data (equal, less, etc) and performs aggregate action (max, min, sum,
  // find_all, etc) on value inside action_data for first match, if any
  template <class cond, size_t width, class Callback>
  REALM_FORCEINLINE bool Array::find_sse_intern(__m128i* action_data, __m128i* data, size_t items,
                                                QueryStateBase* state, size_t baseindex, Callback callback) const
  {
      size_t i = 0;
      __m128i compare_result = {0};
      unsigned int resmask;
  
      // Search loop. Unrolling it has been tested to NOT increase performance (apparently mem bound)
      for (i = 0; i < items; ++i) {
          // equal / not-equal
          if (std::is_same<cond, Equal>::value || std::is_same<cond, NotEqual>::value) {
              if (width == 8)
                  compare_result = _mm_cmpeq_epi8(action_data[i], *data);
              if (width == 16)
                  compare_result = _mm_cmpeq_epi16(action_data[i], *data);
              if (width == 32)
                  compare_result = _mm_cmpeq_epi32(action_data[i], *data);
              if (width == 64) {
                  compare_result = _mm_cmpeq_epi64(action_data[i], *data); // SSE 4.2 only
              }
          }
  
          // greater
          else if (std::is_same<cond, Greater>::value) {
              if (width == 8)
                  compare_result = _mm_cmpgt_epi8(action_data[i], *data);
              if (width == 16)
                  compare_result = _mm_cmpgt_epi16(action_data[i], *data);
              if (width == 32)
                  compare_result = _mm_cmpgt_epi32(action_data[i], *data);
              if (width == 64)
                  compare_result = _mm_cmpgt_epi64(action_data[i], *data);
          }
          // less
          else if (std::is_same<cond, Less>::value) {
              if (width == 8)
                  compare_result = _mm_cmplt_epi8(action_data[i], *data);
              else if (width == 16)
                  compare_result = _mm_cmplt_epi16(action_data[i], *data);
              else if (width == 32)
                  compare_result = _mm_cmplt_epi32(action_data[i], *data);
              else
                  REALM_ASSERT(false);
          }
  
          resmask = _mm_movemask_epi8(compare_result);
  
          if (std::is_same<cond, NotEqual>::value)
              resmask = ~resmask & 0x0000ffff;
  
          size_t s = i * sizeof(__m128i) * 8 / no0(width);
  
          while (resmask != 0) {
  
              uint64_t upper = lower_bits<width / 8>() << (no0(width / 8) - 1);
              uint64_t pattern =
                  resmask &
                  upper; // fixme, bits at wrong offsets. Only OK because we only use them in 'count' aggregate
              if (find_action_pattern(s + baseindex, pattern, state))
                  break;
  
              size_t idx = first_set_bit(resmask) * 8 / no0(width);
              s += idx;
              if (!find_action(s + baseindex, get_universal<width>(reinterpret_cast<char*>(action_data), s), state,
                               callback))
                  return false;
              resmask >>= (idx + 1) * no0(width) / 8;
              ++s;
          }
      }
  
      return true;
  }
  #endif // REALM_COMPILER_SSE
  
  template <class cond, class Callback>
  bool Array::compare_leafs(const Array* foreign, size_t start, size_t end, size_t baseindex, QueryStateBase* state,
                            Callback callback) const
  {
      cond c;
      REALM_ASSERT_3(start, <=, end);
      if (start == end)
          return true;
  
  
      int64_t v;
  
      // We can compare first element without checking for out-of-range
      v = get(start);
      if (c(v, foreign->get(start))) {
          if (!find_action(start + baseindex, v, state, callback))
              return false;
      }
  
      start++;
  
      if (start + 3 < end) {
          v = get(start);
          if (c(v, foreign->get(start)))
              if (!find_action(start + baseindex, v, state, callback))
                  return false;
  
          v = get(start + 1);
          if (c(v, foreign->get(start + 1)))
              if (!find_action(start + 1 + baseindex, v, state, callback))
                  return false;
  
          v = get(start + 2);
          if (c(v, foreign->get(start + 2)))
              if (!find_action(start + 2 + baseindex, v, state, callback))
                  return false;
  
          start += 3;
      }
      else if (start == end) {
          return true;
      }
  
      bool r;
      REALM_TEMPEX3(r = compare_leafs, cond, m_width, Callback, (foreign, start, end, baseindex, state, callback))
      return r;
  }
  
  
  template <class cond, size_t width, class Callback>
  bool Array::compare_leafs(const Array* foreign, size_t start, size_t end, size_t baseindex, QueryStateBase* state,
                            Callback callback) const
  {
      size_t fw = foreign->m_width;
      bool r;
      REALM_TEMPEX4(r = compare_leafs_4, cond, width, Callback, fw, (foreign, start, end, baseindex, state, callback))
      return r;
  }
  
  
  template <class cond, size_t width, class Callback, size_t foreign_width>
  bool Array::compare_leafs_4(const Array* foreign, size_t start, size_t end, size_t baseindex, QueryStateBase* state,
                              Callback callback) const
  {
      cond c;
      char* foreign_m_data = foreign->m_data;
  
      if (width == 0 && foreign_width == 0) {
          if (c(0, 0)) {
              while (start < end) {
                  if (!find_action(start + baseindex, 0, state, callback))
                      return false;
                  start++;
              }
          }
          else {
              return true;
          }
      }
  
  
  #if defined(REALM_COMPILER_SSE)
      if (sseavx<42>() && width == foreign_width && (width == 8 || width == 16 || width == 32)) {
          // We can only use SSE if both bitwidths are equal and above 8 bits and all values are signed
          // and the two arrays are aligned the same way
          if ((reinterpret_cast<size_t>(m_data) & 0xf) == (reinterpret_cast<size_t>(foreign_m_data) & 0xf)) {
              while (start < end && (((reinterpret_cast<size_t>(m_data) & 0xf) * 8 + start * width) % (128) != 0)) {
                  int64_t v = get_universal<width>(m_data, start);
                  int64_t fv = get_universal<foreign_width>(foreign_m_data, start);
                  if (c(v, fv)) {
                      if (!find_action(start + baseindex, v, state, callback))
                          return false;
                  }
                  start++;
              }
              if (start == end)
                  return true;
  
  
              size_t sse_items = (end - start) * width / 128;
              size_t sse_end = start + sse_items * 128 / no0(width);
  
              while (start < sse_end) {
                  __m128i* a = reinterpret_cast<__m128i*>(m_data + start * width / 8);
                  __m128i* b = reinterpret_cast<__m128i*>(foreign_m_data + start * width / 8);
  
                  bool continue_search =
                      find_sse_intern<cond, width, Callback>(a, b, 1, state, baseindex + start, callback);
  
                  if (!continue_search)
                      return false;
  
                  start += 128 / no0(width);
              }
          }
      }
  #endif
  
      while (start < end) {
          int64_t v = get_universal<width>(m_data, start);
          int64_t fv = get_universal<foreign_width>(foreign_m_data, start);
  
          if (c(v, fv)) {
              if (!find_action(start + baseindex, v, state, callback))
                  return false;
          }
  
          start++;
      }
  
      return true;
  }
  
  
  template <class cond, size_t bitwidth, class Callback>
  bool Array::compare(int64_t value, size_t start, size_t end, size_t baseindex, QueryStateBase* state,
                      Callback callback) const
  {
      bool ret = false;
  
      if (std::is_same<cond, Equal>::value)
          ret = compare_equality<true, bitwidth, Callback>(value, start, end, baseindex, state, callback);
      else if (std::is_same<cond, NotEqual>::value)
          ret = compare_equality<false, bitwidth, Callback>(value, start, end, baseindex, state, callback);
      else if (std::is_same<cond, Greater>::value)
          ret = compare_relation<true, bitwidth, Callback>(value, start, end, baseindex, state, callback);
      else if (std::is_same<cond, Less>::value)
          ret = compare_relation<false, bitwidth, Callback>(value, start, end, baseindex, state, callback);
      else
          REALM_ASSERT_DEBUG(false);
  
      return ret;
  }
  
  template <bool gt, size_t bitwidth, class Callback>
  bool Array::compare_relation(int64_t value, size_t start, size_t end, size_t baseindex, QueryStateBase* state,
                               Callback callback) const
  {
      REALM_ASSERT(start <= m_size && (end <= m_size || end == size_t(-1)) && start <= end);
      uint64_t mask = (bitwidth == 64 ? ~0ULL
                                      : ((1ULL << (bitwidth == 64 ? 0 : bitwidth)) -
                                         1ULL)); // Warning free way of computing (1ULL << width) - 1
  
      size_t ee = round_up(start, 64 / no0(bitwidth));
      ee = ee > end ? end : ee;
      for (; start < ee; start++) {
          if (gt ? (get<bitwidth>(start) > value) : (get<bitwidth>(start) < value)) {
              if (!find_action(start + baseindex, get<bitwidth>(start), state, callback))
                  return false;
          }
      }
  
      if (start >= end)
          return true; // none found, continue (return true) regardless what find_action() would have returned on match
  
      const int64_t* p = reinterpret_cast<const int64_t*>(m_data + (start * bitwidth / 8));
      const int64_t* const e = reinterpret_cast<int64_t*>(m_data + (end * bitwidth / 8)) - 1;
  
      // Matches are rare enough to setup fast linear search for remaining items. We use
      // bit hacks from http://graphics.stanford.edu/~seander/bithacks.html#HasLessInWord
  
      if (bitwidth == 1 || bitwidth == 2 || bitwidth == 4 || bitwidth == 8 || bitwidth == 16) {
          uint64_t magic = find_gtlt_magic<gt, bitwidth>(value);
  
          // Bit hacks only work if searched item has its most significant bit clear for 'greater than' or
          // 'item <= 1 << bitwidth' for 'less than'
          if (value != int64_t((magic & mask)) && value >= 0 && bitwidth >= 2 &&
              value <= static_cast<int64_t>((mask >> 1) - (gt ? 1 : 0))) {
              // 15 ms
              while (p < e) {
                  uint64_t upper = lower_bits<bitwidth>() << (no0(bitwidth) - 1);
  
                  const int64_t v = *p;
                  size_t idx;
  
                  // Bit hacks only works if all items in chunk have their most significant bit clear. Test this:
                  upper = upper & v;
  
                  if (!upper) {
                      idx = find_gtlt_fast<gt, bitwidth, Callback>(
                          v, magic, state, (p - reinterpret_cast<int64_t*>(m_data)) * 8 * 8 / no0(bitwidth) + baseindex,
                          callback);
                  }
                  else
                      idx = find_gtlt<gt, bitwidth, Callback>(
                          value, v, state, (p - reinterpret_cast<int64_t*>(m_data)) * 8 * 8 / no0(bitwidth) + baseindex,
                          callback);
  
                  if (!idx)
                      return false;
                  ++p;
              }
          }
          else {
              // 24 ms
              while (p < e) {
                  int64_t v = *p;
                  if (!find_gtlt<gt, bitwidth, Callback>(
                          value, v, state, (p - reinterpret_cast<int64_t*>(m_data)) * 8 * 8 / no0(bitwidth) + baseindex,
                          callback))
                      return false;
                  ++p;
              }
          }
          start = (p - reinterpret_cast<int64_t*>(m_data)) * 8 * 8 / no0(bitwidth);
      }
  
      // matchcount logic in SIMD no longer pays off for 32/64 bit ints because we have just 4/2 elements
  
      // Test unaligned end and/or values of width > 16 manually
      while (start < end) {
          if (gt ? get<bitwidth>(start) > value : get<bitwidth>(start) < value) {
              if (!find_action(start + baseindex, get<bitwidth>(start), state, callback))
                  return false;
          }
          ++start;
      }
      return true;
  }
  
  template <class cond>
  size_t Array::find_first(int64_t value, size_t start, size_t end) const
  {
      REALM_ASSERT(start <= m_size && (end <= m_size || end == size_t(-1)) && start <= end);
      // todo, would be nice to avoid this in order to speed up find_first loops
      QueryStateFindFirst state;
      Finder finder = m_vtable->finder[cond::condition];
      (this->*finder)(value, start, end, 0, &state);
  
      return static_cast<size_t>(state.m_state);
  }
  
  //*************************************************************************************
  // Finding code ends                                                                  *
  //*************************************************************************************
  
  
  } // namespace realm
  
  #endif // REALM_ARRAY_HPP