array.hpp 71.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
/*************************************************************************
 *
 * Copyright 2016 Realm Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *
 **************************************************************************/

/*
Searching: The main finding function is:
    template <class cond, Action action, size_t bitwidth, class Callback>
    void find(int64_t value, size_t start, size_t end, size_t baseindex, QueryState *state, Callback callback) const

    cond:       One of Equal, NotEqual, Greater, etc. classes
    Action:     One of act_ReturnFirst, act_FindAll, act_Max, act_CallbackIdx, etc, constants
    Callback:   Optional function to call for each search result. Will be called if action == act_CallbackIdx

    find() will call find_action_pattern() or find_action() that again calls match() for each search result which
    optionally calls callback():

        find() -> find_action() -------> bool match() -> bool callback()
             |                            ^
             +-> find_action_pattern()----+

    If callback() returns false, find() will exit, otherwise it will keep searching remaining items in array.
*/

#ifndef REALM_ARRAY_HPP
#define REALM_ARRAY_HPP

#include <realm/node.hpp>

#include <cmath>
#include <cstdlib> // size_t
#include <algorithm>
#include <utility>
#include <vector>
#include <ostream>

#include <cstdint> // unint8_t etc

#include <realm/util/assert.hpp>
#include <realm/util/file_mapper.hpp>
#include <realm/utilities.hpp>
#include <realm/alloc.hpp>
#include <realm/string_data.hpp>
#include <realm/query_conditions.hpp>
#include <realm/column_fwd.hpp>
#include <realm/array_direct.hpp>
#include <realm/array_unsigned.hpp>

/*
    MMX: mmintrin.h
    SSE: xmmintrin.h
    SSE2: emmintrin.h
    SSE3: pmmintrin.h
    SSSE3: tmmintrin.h
    SSE4A: ammintrin.h
    SSE4.1: smmintrin.h
    SSE4.2: nmmintrin.h
*/
#ifdef REALM_COMPILER_SSE
#include <emmintrin.h>             // SSE2
#include <realm/realm_nmmintrin.h> // SSE42
#endif

namespace realm {

template <class T>
inline T no0(T v)
{
    return v == 0 ? 1 : v;
}

// Pre-definitions
struct ObjKey;
class Array;
class GroupWriter;
namespace _impl {
class ArrayWriterBase;
}

template <class T>
class BPlusTree;

using KeyColumn = BPlusTree<ObjKey>;


struct MemStats {
    size_t allocated = 0;
    size_t used = 0;
    size_t array_count = 0;
};

#ifdef REALM_DEBUG
template <class C, class T>
std::basic_ostream<C, T>& operator<<(std::basic_ostream<C, T>& out, MemStats stats);
#endif


// Stores a value obtained from Array::get(). It is a ref if the least
// significant bit is clear, otherwise it is a tagged integer. A tagged interger
// is obtained from a logical integer value by left shifting by one bit position
// (multiplying by two), and then setting the least significant bit to
// one. Clearly, this means that the maximum value that can be stored as a
// tagged integer is 2**63 - 1.
class RefOrTagged {
public:
    bool is_ref() const noexcept;
    bool is_tagged() const noexcept;
    ref_type get_as_ref() const noexcept;
    uint_fast64_t get_as_int() const noexcept;

    static RefOrTagged make_ref(ref_type) noexcept;
    static RefOrTagged make_tagged(uint_fast64_t) noexcept;

private:
    int_fast64_t m_value;
    RefOrTagged(int_fast64_t) noexcept;
    friend class Array;
};


struct TreeInsertBase {
    size_t m_split_offset;
    size_t m_split_size;
};
template <class T>
class QueryStateFindAll : public QueryStateBase {
public:
    explicit QueryStateFindAll(T& keys, size_t limit = -1)
        : QueryStateBase(limit)
        , m_keys(keys)
    {
    }
    bool match(size_t index, Mixed) noexcept final;

private:
    T& m_keys;
};

class QueryStateFindFirst : public QueryStateBase {
public:
    size_t m_state = realm::not_found;
    QueryStateFindFirst()
        : QueryStateBase(1)
    {
    }
    bool match(size_t index, Mixed) noexcept final
    {
        m_match_count++;
        m_state = index;
        return false;
    }
};

class Array : public Node, public ArrayParent {
public:
    //    void state_init(int action, QueryState *state);
    //    bool match(int action, size_t index, int64_t value, QueryState *state);

    /// Create an array accessor in the unattached state.
    explicit Array(Allocator& allocator) noexcept
        : Node(allocator)
    {
    }

    ~Array() noexcept override {}

    /// Create a new integer array of the specified type and size, and filled
    /// with the specified value, and attach this accessor to it. This does not
    /// modify the parent reference information of this accessor.
    ///
    /// Note that the caller assumes ownership of the allocated underlying
    /// node. It is not owned by the accessor.
    void create(Type, bool context_flag = false, size_t size = 0, int_fast64_t value = 0);

    /// Reinitialize this array accessor to point to the specified new
    /// underlying memory. This does not modify the parent reference information
    /// of this accessor.
    void init_from_ref(ref_type ref) noexcept
    {
        REALM_ASSERT_DEBUG(ref);
        char* header = m_alloc.translate(ref);
        init_from_mem(MemRef(header, ref, m_alloc));
    }

    /// Same as init_from_ref(ref_type) but avoid the mapping of 'ref' to memory
    /// pointer.
    void init_from_mem(MemRef) noexcept;

    /// Same as `init_from_ref(get_ref_from_parent())`.
    void init_from_parent() noexcept
    {
        ref_type ref = get_ref_from_parent();
        init_from_ref(ref);
    }

    /// Called in the context of Group::commit() to ensure that attached
    /// accessors stay valid across a commit. Please note that this works only
    /// for non-transactional commits. Accessors obtained during a transaction
    /// are always detached when the transaction ends.
    void update_from_parent() noexcept;

    /// Change the type of an already attached array node.
    ///
    /// The effect of calling this function on an unattached accessor is
    /// undefined.
    void set_type(Type);

    /// Construct a complete copy of this array (including its subarrays) using
    /// the specified target allocator and return just the reference to the
    /// underlying memory.
    MemRef clone_deep(Allocator& target_alloc) const;

    /// Construct an empty integer array of the specified type, and return just
    /// the reference to the underlying memory.
    static MemRef create_empty_array(Type, bool context_flag, Allocator&);

    /// Construct an integer array of the specified type and size, and return
    /// just the reference to the underlying memory. All elements will be
    /// initialized to the specified value.
    static MemRef create_array(Type, bool context_flag, size_t size, int_fast64_t value, Allocator&);

    Type get_type() const noexcept;

    /// The meaning of 'width' depends on the context in which this
    /// array is used.
    size_t get_width() const noexcept
    {
        REALM_ASSERT_3(m_width, ==, get_width_from_header(get_header()));
        return m_width;
    }

    static void add_to_column(IntegerColumn* column, int64_t value);
    static void add_to_column(KeyColumn* column, int64_t value);

    void insert(size_t ndx, int_fast64_t value);
    void add(int_fast64_t value);

    // Used from ArrayBlob
    size_t blob_size() const noexcept;
    ref_type blob_replace(size_t begin, size_t end, const char* data, size_t data_size, bool add_zero_term);

    /// This function is guaranteed to not throw if the current width is
    /// sufficient for the specified value (e.g. if you have called
    /// ensure_minimum_width(value)) and get_alloc().is_read_only(get_ref())
    /// returns false (noexcept:array-set). Note that for a value of zero, the
    /// first criterion is trivially satisfied.
    void set(size_t ndx, int64_t value);

    void set_as_ref(size_t ndx, ref_type ref);

    template <size_t w>
    void set(size_t ndx, int64_t value);

    int64_t get(size_t ndx) const noexcept;

    template <size_t w>
    int64_t get(size_t ndx) const noexcept;

    void get_chunk(size_t ndx, int64_t res[8]) const noexcept;

    template <size_t w>
    void get_chunk(size_t ndx, int64_t res[8]) const noexcept;

    ref_type get_as_ref(size_t ndx) const noexcept;

    RefOrTagged get_as_ref_or_tagged(size_t ndx) const noexcept;
    void set(size_t ndx, RefOrTagged);
    void add(RefOrTagged);
    void ensure_minimum_width(RefOrTagged);

    int64_t front() const noexcept;
    int64_t back() const noexcept;

    void alloc(size_t init_size, size_t new_width)
    {
        REALM_ASSERT_3(m_width, ==, get_width_from_header(get_header()));
        REALM_ASSERT_3(m_size, ==, get_size_from_header(get_header()));
        Node::alloc(init_size, new_width);
        update_width_cache_from_header();
    }

    /// Remove the element at the specified index, and move elements at higher
    /// indexes to the next lower index.
    ///
    /// This function does **not** destroy removed subarrays. That is, if the
    /// erased element is a 'ref' pointing to a subarray, then that subarray
    /// will not be destroyed automatically.
    ///
    /// This function guarantees that no exceptions will be thrown if
    /// get_alloc().is_read_only(get_ref()) would return false before the
    /// call. This is automatically guaranteed if the array is used in a
    /// non-transactional context, or if the array has already been successfully
    /// modified within the current write transaction.
    void erase(size_t ndx);

    /// Same as erase(size_t), but remove all elements in the specified
    /// range.
    ///
    /// Please note that this function does **not** destroy removed subarrays.
    ///
    /// This function guarantees that no exceptions will be thrown if
    /// get_alloc().is_read_only(get_ref()) would return false before the call.
    void erase(size_t begin, size_t end);

    /// Reduce the size of this array to the specified number of elements. It is
    /// an error to specify a size that is greater than the current size of this
    /// array. The effect of doing so is undefined. This is just a shorthand for
    /// calling the ranged erase() function with appropriate arguments.
    ///
    /// Please note that this function does **not** destroy removed
    /// subarrays. See clear_and_destroy_children() for an alternative.
    ///
    /// This function guarantees that no exceptions will be thrown if
    /// get_alloc().is_read_only(get_ref()) would return false before the call.
    void truncate(size_t new_size);

    /// Reduce the size of this array to the specified number of elements. It is
    /// an error to specify a size that is greater than the current size of this
    /// array. The effect of doing so is undefined. Subarrays will be destroyed
    /// recursively, as if by a call to `destroy_deep(subarray_ref, alloc)`.
    ///
    /// This function is guaranteed not to throw if
    /// get_alloc().is_read_only(get_ref()) returns false.
    void truncate_and_destroy_children(size_t new_size);

    /// Remove every element from this array. This is just a shorthand for
    /// calling truncate(0).
    ///
    /// Please note that this function does **not** destroy removed
    /// subarrays. See clear_and_destroy_children() for an alternative.
    ///
    /// This function guarantees that no exceptions will be thrown if
    /// get_alloc().is_read_only(get_ref()) would return false before the call.
    void clear();

    /// Remove every element in this array. Subarrays will be destroyed
    /// recursively, as if by a call to `destroy_deep(subarray_ref,
    /// alloc)`. This is just a shorthand for calling
    /// truncate_and_destroy_children(0).
    ///
    /// This function guarantees that no exceptions will be thrown if
    /// get_alloc().is_read_only(get_ref()) would return false before the call.
    void clear_and_destroy_children();

    /// If neccessary, expand the representation so that it can store the
    /// specified value.
    void ensure_minimum_width(int_fast64_t value);

    /// This one may change the represenation of the array, so be carefull if
    /// you call it after ensure_minimum_width().
    void set_all_to_zero();

    /// Add \a diff to the element at the specified index.
    void adjust(size_t ndx, int_fast64_t diff);

    /// Add \a diff to all the elements in the specified index range.
    void adjust(size_t begin, size_t end, int_fast64_t diff);

    //@{
    /// This is similar in spirit to std::move() from `<algorithm>`.
    /// \a dest_begin must not be in the range [`begin`,`end`)
    ///
    /// This function is guaranteed to not throw if
    /// `get_alloc().is_read_only(get_ref())` returns false.
    void move(size_t begin, size_t end, size_t dest_begin);
    //@}

    // Move elements from ndx and above to another array
    void move(Array& dst, size_t ndx);

    //@{
    /// Find the lower/upper bound of the specified value in a sequence of
    /// integers which must already be sorted ascendingly.
    ///
    /// For an integer value '`v`', lower_bound_int(v) returns the index '`l`'
    /// of the first element such that `get(l) &ge; v`, and upper_bound_int(v)
    /// returns the index '`u`' of the first element such that `get(u) &gt;
    /// v`. In both cases, if no such element is found, the returned value is
    /// the number of elements in the array.
    ///
    ///     3 3 3 4 4 4 5 6 7 9 9 9
    ///     ^     ^     ^     ^     ^
    ///     |     |     |     |     |
    ///     |     |     |     |      -- Lower and upper bound of 15
    ///     |     |     |     |
    ///     |     |     |      -- Lower and upper bound of 8
    ///     |     |     |
    ///     |     |      -- Upper bound of 4
    ///     |     |
    ///     |      -- Lower bound of 4
    ///     |
    ///      -- Lower and upper bound of 1
    ///
    /// These functions are similar to std::lower_bound() and
    /// std::upper_bound().
    ///
    /// We currently use binary search. See for example
    /// http://www.tbray.org/ongoing/When/200x/2003/03/22/Binary.
    ///
    /// FIXME: It may be worth considering if overall efficiency can be improved
    /// by doing a linear search for short sequences.
    size_t lower_bound_int(int64_t value) const noexcept;
    size_t upper_bound_int(int64_t value) const noexcept;
    //@}

    int64_t get_sum(size_t start = 0, size_t end = size_t(-1)) const
    {
        return sum(start, end);
    }

    /// This information is guaranteed to be cached in the array accessor.
    bool is_inner_bptree_node() const noexcept;

    /// Returns true if type is either type_HasRefs or type_InnerColumnNode.
    ///
    /// This information is guaranteed to be cached in the array accessor.
    bool has_refs() const noexcept;
    void set_has_refs(bool) noexcept;

    /// This information is guaranteed to be cached in the array accessor.
    ///
    /// Columns and indexes can use the context bit to differentiate leaf types.
    bool get_context_flag() const noexcept;
    void set_context_flag(bool) noexcept;

    /// Recursively destroy children (as if calling
    /// clear_and_destroy_children()), then put this accessor into the detached
    /// state (as if calling detach()), then free the allocated memory. If this
    /// accessor is already in the detached state, this function has no effect
    /// (idempotency).
    void destroy_deep() noexcept;

    /// Shorthand for `destroy_deep(MemRef(ref, alloc), alloc)`.
    static void destroy_deep(ref_type ref, Allocator& alloc) noexcept;

    /// Destroy the specified array node and all of its children, recursively.
    ///
    /// This is done by freeing the specified array node after calling
    /// destroy_deep() for every contained 'ref' element.
    static void destroy_deep(MemRef, Allocator&) noexcept;

    // Clone deep
    static MemRef clone(MemRef, Allocator& from_alloc, Allocator& target_alloc);

    // Serialization

    /// Returns the ref (position in the target stream) of the written copy of
    /// this array, or the ref of the original array if \a only_if_modified is
    /// true, and this array is unmodified (Alloc::is_read_only()).
    ///
    /// The number of bytes that will be written by a non-recursive invocation
    /// of this function is exactly the number returned by get_byte_size().
    ///
    /// \param out The destination stream (writer).
    ///
    /// \param deep If true, recursively write out subarrays, but still subject
    /// to \a only_if_modified.
    ///
    /// \param only_if_modified Set to `false` to always write, or to `true` to
    /// only write the array if it has been modified.
    ref_type write(_impl::ArrayWriterBase& out, bool deep, bool only_if_modified) const;

    /// Same as non-static write() with `deep` set to true. This is for the
    /// cases where you do not already have an array accessor available.
    static ref_type write(ref_type, Allocator&, _impl::ArrayWriterBase&, bool only_if_modified);

    // Main finding function - used for find_first, find_all, sum, max, min, etc.
    bool find(int cond, int64_t value, size_t start, size_t end, size_t baseindex, QueryStateBase* state) const;

    template <class cond, class Callback>
    bool find(int64_t value, size_t start, size_t end, size_t baseindex, QueryStateBase* state,
              Callback callback) const;

    // Wrappers for backwards compatibility and for simple use without
    // setting up state initialization etc
    template <class cond>
    size_t find_first(int64_t value, size_t start = 0, size_t end = size_t(-1)) const;

    void find_all(IntegerColumn* result, int64_t value, size_t col_offset = 0, size_t begin = 0,
                  size_t end = size_t(-1)) const;

    size_t find_first(int64_t value, size_t begin = 0, size_t end = size_t(-1)) const;

    // Non-SSE find for the four functions Equal/NotEqual/Less/Greater
    template <class cond, size_t bitwidth, class Callback>
    bool compare(int64_t value, size_t start, size_t end, size_t baseindex, QueryStateBase* state,
                 Callback callback) const;

    // Non-SSE find for Equal/NotEqual
    template <bool eq, size_t width, class Callback>
    inline bool compare_equality(int64_t value, size_t start, size_t end, size_t baseindex, QueryStateBase* state,
                                 Callback callback) const;

    // Non-SSE find for Less/Greater
    template <bool gt, size_t bitwidth, class Callback>
    bool compare_relation(int64_t value, size_t start, size_t end, size_t baseindex, QueryStateBase* state,
                          Callback callback) const;

    template <class cond, size_t foreign_width, class Callback, size_t width>
    bool compare_leafs_4(const Array* foreign, size_t start, size_t end, size_t baseindex, QueryStateBase* state,
                         Callback callback) const;

    template <class cond, class Callback>
    bool compare_leafs(const Array* foreign, size_t start, size_t end, size_t baseindex, QueryStateBase* state,
                       Callback callback) const;

    template <class cond, size_t width, class Callback>
    bool compare_leafs(const Array* foreign, size_t start, size_t end, size_t baseindex, QueryStateBase* state,
                       Callback callback) const;

// SSE find for the four functions Equal/NotEqual/Less/Greater
#ifdef REALM_COMPILER_SSE
    template <class cond, size_t width, class Callback>
    bool find_sse(int64_t value, __m128i* data, size_t items, QueryStateBase* state, size_t baseindex,
                  Callback callback) const;

    template <class cond, size_t width, class Callback>
    REALM_FORCEINLINE bool find_sse_intern(__m128i* action_data, __m128i* data, size_t items, QueryStateBase* state,
                                           size_t baseindex, Callback callback) const;

#endif

    template <size_t width>
    inline bool test_zero(uint64_t value) const; // Tests value for 0-elements

    template <bool eq, size_t width>
    size_t find_zero(uint64_t v) const; // Finds position of 0/non-zero element

    template <size_t width, bool zero>
    uint64_t cascade(uint64_t a) const; // Sets lowermost bits of zero or non-zero elements

    template <bool gt, size_t width>
    int64_t
    find_gtlt_magic(int64_t v) const; // Compute magic constant needed for searching for value 'v' using bit hacks

    template <size_t width>
    inline int64_t lower_bits() const; // Return chunk with lower bit set in each element

    size_t first_set_bit(unsigned int v) const;
    size_t first_set_bit64(int64_t v) const;

    template <size_t w>
    int64_t get_universal(const char* const data, const size_t ndx) const;

    // Find value greater/less in 64-bit chunk - only works for positive values
    template <bool gt, size_t width, class Callback>
    bool find_gtlt_fast(uint64_t chunk, uint64_t magic, QueryStateBase* state, size_t baseindex,
                        Callback callback) const;

    // Find value greater/less in 64-bit chunk - no constraints
    template <bool gt, size_t width, class Callback>
    bool find_gtlt(int64_t v, uint64_t chunk, QueryStateBase* state, size_t baseindex, Callback callback) const;

    /// Get the specified element without the cost of constructing an
    /// array instance. If an array instance is already available, or
    /// you need to get multiple values, then this method will be
    /// slower.
    static int_fast64_t get(const char* header, size_t ndx) noexcept;

    /// Like get(const char*, size_t) but gets two consecutive
    /// elements.
    static std::pair<int64_t, int64_t> get_two(const char* header, size_t ndx) noexcept;

    static void get_three(const char* data, size_t ndx, ref_type& v0, ref_type& v1, ref_type& v2) noexcept;

    static RefOrTagged get_as_ref_or_tagged(const char* header, size_t ndx) noexcept
    {
        return get(header, ndx);
    }

    /// Get the number of bytes currently in use by this array. This
    /// includes the array header, but it does not include allocated
    /// bytes corresponding to excess capacity. The result is
    /// guaranteed to be a multiple of 8 (i.e., 64-bit aligned).
    ///
    /// This number is exactly the number of bytes that will be
    /// written by a non-recursive invocation of write().
    size_t get_byte_size() const noexcept;

    /// Get the maximum number of bytes that can be written by a
    /// non-recursive invocation of write() on an array with the
    /// specified number of elements, that is, the maximum value that
    /// can be returned by get_byte_size().
    static size_t get_max_byte_size(size_t num_elems) noexcept;

    /// FIXME: Belongs in IntegerArray
    static size_t calc_aligned_byte_size(size_t size, int width);

    class MemUsageHandler {
    public:
        virtual void handle(ref_type ref, size_t allocated, size_t used) = 0;
    };

    void report_memory_usage(MemUsageHandler&) const;

    void stats(MemStats& stats_dest) const noexcept;

    void verify() const;

    Array& operator=(const Array&) = delete; // not allowed
    Array(const Array&) = delete;            // not allowed

protected:
    // This returns the minimum value ("lower bound") of the representable values
    // for the given bit width. Valid widths are 0, 1, 2, 4, 8, 16, 32, and 64.
    static constexpr int_fast64_t lbound_for_width(size_t width) noexcept;

    // This returns the maximum value ("inclusive upper bound") of the representable values
    // for the given bit width. Valid widths are 0, 1, 2, 4, 8, 16, 32, and 64.
    static constexpr int_fast64_t ubound_for_width(size_t width) noexcept;

private:
    void update_width_cache_from_header() noexcept;

    void do_ensure_minimum_width(int_fast64_t);

    int64_t sum(size_t start, size_t end) const;
    size_t count(int64_t value) const noexcept;

    bool maximum(int64_t& result, size_t start = 0, size_t end = size_t(-1), size_t* return_ndx = nullptr) const;

    bool minimum(int64_t& result, size_t start = 0, size_t end = size_t(-1), size_t* return_ndx = nullptr) const;

    template <size_t w>
    int64_t sum(size_t start, size_t end) const;

    template <bool max, size_t w>
    bool minmax(int64_t& result, size_t start, size_t end, size_t* return_ndx) const;

protected:
    /// It is an error to specify a non-zero value unless the width
    /// type is wtype_Bits. It is also an error to specify a non-zero
    /// size if the width type is wtype_Ignore.
    static MemRef create(Type, bool context_flag, WidthType, size_t size, int_fast64_t value, Allocator&);

    // Overriding method in ArrayParent
    void update_child_ref(size_t, ref_type) override;

    // Overriding method in ArrayParent
    ref_type get_child_ref(size_t) const noexcept override;

    void destroy_children(size_t offset = 0) noexcept;

protected:
    // Getters and Setters for adaptive-packed arrays
    typedef int64_t (Array::*Getter)(size_t) const; // Note: getters must not throw
    typedef void (Array::*Setter)(size_t, int64_t);
    typedef bool (Array::*Finder)(int64_t, size_t, size_t, size_t, QueryStateBase*) const;
    typedef void (Array::*ChunkGetter)(size_t, int64_t res[8]) const; // Note: getters must not throw

    struct VTable {
        Getter getter;
        ChunkGetter chunk_getter;
        Setter setter;
        Finder finder[cond_VTABLE_FINDER_COUNT]; // one for each active function pointer
    };
    template <size_t w>
    struct VTableForWidth;

    // This is the one installed into the m_vtable->finder slots.
    template <class cond, size_t bitwidth>
    bool find_vtable(int64_t value, size_t start, size_t end, size_t baseindex, QueryStateBase* state) const;


protected:
    /// Takes a 64-bit value and returns the minimum number of bits needed
    /// to fit the value. For alignment this is rounded up to nearest
    /// log2. Posssible results {0, 1, 2, 4, 8, 16, 32, 64}
    static size_t bit_width(int64_t value);

    void report_memory_usage_2(MemUsageHandler&) const;

private:
    Getter m_getter = nullptr; // cached to avoid indirection
    const VTable* m_vtable = nullptr;

protected:
    uint_least8_t m_width = 0; // Size of an element (meaning depend on type of array).
    int64_t m_lbound;          // min number that can be stored with current m_width
    int64_t m_ubound;          // max number that can be stored with current m_width

    bool m_is_inner_bptree_node; // This array is an inner node of B+-tree.
    bool m_has_refs;             // Elements whose first bit is zero are refs to subarrays.
    bool m_context_flag;         // Meaning depends on context.

private:
    ref_type do_write_shallow(_impl::ArrayWriterBase&) const;
    ref_type do_write_deep(_impl::ArrayWriterBase&, bool only_if_modified) const;

    friend class Allocator;
    friend class SlabAlloc;
    friend class GroupWriter;

    // Optimized implementation for release mode
    template <class cond, size_t bitwidth, class Callback>
    bool find_optimized(int64_t value, size_t start, size_t end, size_t baseindex, QueryStateBase* state,
                        Callback callback) const;

protected:
    // Called for each search result
    template <class Callback>
    bool find_action(size_t index, util::Optional<int64_t> value, QueryStateBase* state, Callback callback) const;

    bool find_action_pattern(size_t index, uint64_t pattern, QueryStateBase* state) const;
    template <size_t bitwidth, class Callback>
    bool find_all_will_match(size_t start, size_t end, size_t baseindex, QueryStateBase* state,
                             Callback callback) const;
};

// Implementation:


constexpr inline int_fast64_t Array::lbound_for_width(size_t width) noexcept
{
    if (width == 32) {
        return -0x80000000LL;
    }
    else if (width == 16) {
        return -0x8000LL;
    }
    else if (width < 8) {
        return 0;
    }
    else if (width == 8) {
        return -0x80LL;
    }
    else if (width == 64) {
        return -0x8000000000000000LL;
    }
    else {
        REALM_UNREACHABLE();
    }
}

constexpr inline int_fast64_t Array::ubound_for_width(size_t width) noexcept
{
    if (width == 32) {
        return 0x7FFFFFFFLL;
    }
    else if (width == 16) {
        return 0x7FFFLL;
    }
    else if (width == 0) {
        return 0;
    }
    else if (width == 1) {
        return 1;
    }
    else if (width == 2) {
        return 3;
    }
    else if (width == 4) {
        return 15;
    }
    else if (width == 8) {
        return 0x7FLL;
    }
    else if (width == 64) {
        return 0x7FFFFFFFFFFFFFFFLL;
    }
    else {
        REALM_UNREACHABLE();
    }
}

inline bool RefOrTagged::is_ref() const noexcept
{
    return (m_value & 1) == 0;
}

inline bool RefOrTagged::is_tagged() const noexcept
{
    return !is_ref();
}

inline ref_type RefOrTagged::get_as_ref() const noexcept
{
    // to_ref() is defined in <alloc.hpp>
    return to_ref(m_value);
}

inline uint_fast64_t RefOrTagged::get_as_int() const noexcept
{
    // The bitwise AND is there in case uint_fast64_t is wider than 64 bits.
    return (uint_fast64_t(m_value) & 0xFFFFFFFFFFFFFFFFULL) >> 1;
}

inline RefOrTagged RefOrTagged::make_ref(ref_type ref) noexcept
{
    // from_ref() is defined in <alloc.hpp>
    int_fast64_t value = from_ref(ref);
    return RefOrTagged(value);
}

inline RefOrTagged RefOrTagged::make_tagged(uint_fast64_t i) noexcept
{
    REALM_ASSERT(i < (1ULL << 63));
    return RefOrTagged((i << 1) | 1);
}

inline RefOrTagged::RefOrTagged(int_fast64_t value) noexcept
    : m_value(value)
{
}

inline void Array::create(Type type, bool context_flag, size_t length, int_fast64_t value)
{
    MemRef mem = create_array(type, context_flag, length, value, m_alloc); // Throws
    init_from_mem(mem);
}


inline Array::Type Array::get_type() const noexcept
{
    if (m_is_inner_bptree_node) {
        REALM_ASSERT_DEBUG(m_has_refs);
        return type_InnerBptreeNode;
    }
    if (m_has_refs)
        return type_HasRefs;
    return type_Normal;
}


inline void Array::get_chunk(size_t ndx, int64_t res[8]) const noexcept
{
    REALM_ASSERT_DEBUG(ndx < m_size);
    (this->*(m_vtable->chunk_getter))(ndx, res);
}


inline int64_t Array::get(size_t ndx) const noexcept
{
    REALM_ASSERT_DEBUG(is_attached());
    REALM_ASSERT_DEBUG(ndx < m_size);
    return (this->*m_getter)(ndx);

    // Two ideas that are not efficient but may be worth looking into again:
    /*
        // Assume correct width is found early in REALM_TEMPEX, which is the case for B tree offsets that
        // are probably either 2^16 long. Turns out to be 25% faster if found immediately, but 50-300% slower
        // if found later
        REALM_TEMPEX(return get, (ndx));
    */
    /*
        // Slightly slower in both of the if-cases. Also needs an matchcount m_size check too, to avoid
        // reading beyond array.
        if (m_width >= 8 && m_size > ndx + 7)
            return get<64>(ndx >> m_shift) & m_widthmask;
        else
            return (this->*(m_vtable->getter))(ndx);
    */
}

inline int64_t Array::front() const noexcept
{
    return get(0);
}

inline int64_t Array::back() const noexcept
{
    return get(m_size - 1);
}

inline ref_type Array::get_as_ref(size_t ndx) const noexcept
{
    REALM_ASSERT_DEBUG(is_attached());
    REALM_ASSERT_DEBUG(m_has_refs);
    int64_t v = get(ndx);
    return to_ref(v);
}

inline RefOrTagged Array::get_as_ref_or_tagged(size_t ndx) const noexcept
{
    REALM_ASSERT(has_refs());
    return RefOrTagged(get(ndx));
}

inline void Array::set(size_t ndx, RefOrTagged ref_or_tagged)
{
    REALM_ASSERT(has_refs());
    set(ndx, ref_or_tagged.m_value); // Throws
}

inline void Array::add(RefOrTagged ref_or_tagged)
{
    REALM_ASSERT(has_refs());
    add(ref_or_tagged.m_value); // Throws
}

inline void Array::ensure_minimum_width(RefOrTagged ref_or_tagged)
{
    REALM_ASSERT(has_refs());
    ensure_minimum_width(ref_or_tagged.m_value); // Throws
}

inline bool Array::is_inner_bptree_node() const noexcept
{
    return m_is_inner_bptree_node;
}

inline bool Array::has_refs() const noexcept
{
    return m_has_refs;
}

inline void Array::set_has_refs(bool value) noexcept
{
    if (m_has_refs != value) {
        REALM_ASSERT(!is_read_only());
        m_has_refs = value;
        set_hasrefs_in_header(value, get_header());
    }
}

inline bool Array::get_context_flag() const noexcept
{
    return m_context_flag;
}

inline void Array::set_context_flag(bool value) noexcept
{
    if (m_context_flag != value) {
        copy_on_write();
        m_context_flag = value;
        set_context_flag_in_header(value, get_header());
    }
}

inline void Array::destroy_deep() noexcept
{
    if (!is_attached())
        return;

    if (m_has_refs)
        destroy_children();

    char* header = get_header_from_data(m_data);
    m_alloc.free_(m_ref, header);
    m_data = nullptr;
}

inline ref_type Array::write(_impl::ArrayWriterBase& out, bool deep, bool only_if_modified) const
{
    REALM_ASSERT(is_attached());

    if (only_if_modified && m_alloc.is_read_only(m_ref))
        return m_ref;

    if (!deep || !m_has_refs)
        return do_write_shallow(out); // Throws

    return do_write_deep(out, only_if_modified); // Throws
}

inline ref_type Array::write(ref_type ref, Allocator& alloc, _impl::ArrayWriterBase& out, bool only_if_modified)
{
    if (only_if_modified && alloc.is_read_only(ref))
        return ref;

    Array array(alloc);
    array.init_from_ref(ref);

    if (!array.m_has_refs)
        return array.do_write_shallow(out); // Throws

    return array.do_write_deep(out, only_if_modified); // Throws
}

inline void Array::add(int_fast64_t value)
{
    insert(m_size, value);
}

inline void Array::erase(size_t ndx)
{
    // This can throw, but only if array is currently in read-only
    // memory.
    move(ndx + 1, size(), ndx);

    // Update size (also in header)
    --m_size;
    set_header_size(m_size);
}


inline void Array::erase(size_t begin, size_t end)
{
    if (begin != end) {
        // This can throw, but only if array is currently in read-only memory.
        move(end, size(), begin); // Throws

        // Update size (also in header)
        m_size -= end - begin;
        set_header_size(m_size);
    }
}

inline void Array::clear()
{
    truncate(0); // Throws
}

inline void Array::clear_and_destroy_children()
{
    truncate_and_destroy_children(0);
}

inline void Array::destroy_deep(ref_type ref, Allocator& alloc) noexcept
{
    destroy_deep(MemRef(ref, alloc), alloc);
}

inline void Array::destroy_deep(MemRef mem, Allocator& alloc) noexcept
{
    if (!get_hasrefs_from_header(mem.get_addr())) {
        alloc.free_(mem);
        return;
    }
    Array array(alloc);
    array.init_from_mem(mem);
    array.destroy_deep();
}


inline void Array::adjust(size_t ndx, int_fast64_t diff)
{
    REALM_ASSERT_3(ndx, <=, m_size);
    if (diff != 0) {
        // FIXME: Should be optimized
        int_fast64_t v = get(ndx);
        set(ndx, int64_t(v + diff)); // Throws
    }
}

inline void Array::adjust(size_t begin, size_t end, int_fast64_t diff)
{
    if (diff != 0) {
        // FIXME: Should be optimized
        for (size_t i = begin; i != end; ++i)
            adjust(i, diff); // Throws
    }
}


//-------------------------------------------------


inline size_t Array::get_byte_size() const noexcept
{
    const char* header = get_header_from_data(m_data);
    WidthType wtype = Node::get_wtype_from_header(header);
    size_t num_bytes = NodeHeader::calc_byte_size(wtype, m_size, m_width);

    REALM_ASSERT_7(m_alloc.is_read_only(m_ref), ==, true, ||, num_bytes, <=, get_capacity_from_header(header));

    return num_bytes;
}


//-------------------------------------------------

inline MemRef Array::clone_deep(Allocator& target_alloc) const
{
    char* header = get_header_from_data(m_data);
    return clone(MemRef(header, m_ref, m_alloc), m_alloc, target_alloc); // Throws
}

inline MemRef Array::create_empty_array(Type type, bool context_flag, Allocator& alloc)
{
    size_t size = 0;
    int_fast64_t value = 0;
    return create_array(type, context_flag, size, value, alloc); // Throws
}

inline MemRef Array::create_array(Type type, bool context_flag, size_t size, int_fast64_t value, Allocator& alloc)
{
    return create(type, context_flag, wtype_Bits, size, value, alloc); // Throws
}

inline size_t Array::get_max_byte_size(size_t num_elems) noexcept
{
    int max_bytes_per_elem = 8;
    return header_size + num_elems * max_bytes_per_elem;
}


inline void Array::update_child_ref(size_t child_ndx, ref_type new_ref)
{
    set(child_ndx, new_ref);
}

inline ref_type Array::get_child_ref(size_t child_ndx) const noexcept
{
    return get_as_ref(child_ndx);
}

inline void Array::ensure_minimum_width(int_fast64_t value)
{
    if (value >= m_lbound && value <= m_ubound)
        return;
    do_ensure_minimum_width(value);
}


//*************************************************************************************
// Finding code                                                                       *
//*************************************************************************************

template <size_t w>
int64_t Array::get(size_t ndx) const noexcept
{
    return get_universal<w>(m_data, ndx);
}

template <size_t w>
int64_t Array::get_universal(const char* data, size_t ndx) const
{
    if (w == 0) {
        return 0;
    }
    else if (w == 1) {
        size_t offset = ndx >> 3;
        return (data[offset] >> (ndx & 7)) & 0x01;
    }
    else if (w == 2) {
        size_t offset = ndx >> 2;
        return (data[offset] >> ((ndx & 3) << 1)) & 0x03;
    }
    else if (w == 4) {
        size_t offset = ndx >> 1;
        return (data[offset] >> ((ndx & 1) << 2)) & 0x0F;
    }
    else if (w == 8) {
        return *reinterpret_cast<const signed char*>(data + ndx);
    }
    else if (w == 16) {
        size_t offset = ndx * 2;
        return *reinterpret_cast<const int16_t*>(data + offset);
    }
    else if (w == 32) {
        size_t offset = ndx * 4;
        return *reinterpret_cast<const int32_t*>(data + offset);
    }
    else if (w == 64) {
        size_t offset = ndx * 8;
        return *reinterpret_cast<const int64_t*>(data + offset);
    }
    else {
        REALM_ASSERT_DEBUG(false);
        return int64_t(-1);
    }
}

/*
find() (calls find_optimized()) may call find_action for each search result.

'index' tells the row index of a single match and 'value' tells its value. Return false to make Array-finder break
its search or return true to let it continue until 'end' or 'limit'.
*/
template <class Callback>
bool Array::find_action(size_t index, util::Optional<int64_t>, QueryStateBase*, Callback callback) const
{
    return callback(index);
}

// This function is used when there is no callback. Here we will just perform the action implemented in 'state'.
template <>
inline bool Array::find_action<std::nullptr_t>(size_t index, util::Optional<int64_t> value, QueryStateBase* state,
                                               std::nullptr_t) const
{
    return state->match(index, value);
}

/*
find() (calls find_optimized()) may call find_action_pattern before calling find_action.

'indexpattern' contains a 64-bit chunk of elements, each of 'width' bits in size where each element indicates a
match if its lower bit is set, otherwise it indicates a non-match. 'index' tells the database row index of the
first element. You must return true if you chose to 'consume' the chunk or false if not. If not, then Array-finder
will afterwards call match() successive times with pattern == false.

Array-finder decides itself if - and when - it wants to pass you an indexpattern. It depends on array bit width, match
frequency, and whether the arithemetic and computations for the given search criteria makes it feasible to construct
such a pattern.
*/
inline bool Array::find_action_pattern(size_t /*index*/, uint64_t /*pattern*/, QueryStateBase* /*st*/) const
{
    // return st->match_pattern(index, pattern); FIXME: Use for act_Count
    return false;
}


template <size_t width, bool zero>
uint64_t Array::cascade(uint64_t a) const
{
    // Takes a chunk of values as argument and sets the least significant bit for each
    // element which is zero or non-zero, depending on the template parameter.
    // Example for zero=true:
    // width == 4 and a = 0x5fd07a107610f610
    // will return:       0x0001000100010001

    // static values needed for fast population count
    const uint64_t m1 = 0x5555555555555555ULL;

    if (width == 1) {
        return zero ? ~a : a;
    }
    else if (width == 2) {
        // Masks to avoid spillover between segments in cascades
        const uint64_t c1 = ~0ULL / 0x3 * 0x1;

        a |= (a >> 1) & c1; // cascade ones in non-zeroed segments
        a &= m1;            // isolate single bit in each segment
        if (zero)
            a ^= m1; // reverse isolated bits if checking for zeroed segments

        return a;
    }
    else if (width == 4) {
        const uint64_t m = ~0ULL / 0xF * 0x1;

        // Masks to avoid spillover between segments in cascades
        const uint64_t c1 = ~0ULL / 0xF * 0x7;
        const uint64_t c2 = ~0ULL / 0xF * 0x3;

        a |= (a >> 1) & c1; // cascade ones in non-zeroed segments
        a |= (a >> 2) & c2;
        a &= m; // isolate single bit in each segment
        if (zero)
            a ^= m; // reverse isolated bits if checking for zeroed segments

        return a;
    }
    else if (width == 8) {
        const uint64_t m = ~0ULL / 0xFF * 0x1;

        // Masks to avoid spillover between segments in cascades
        const uint64_t c1 = ~0ULL / 0xFF * 0x7F;
        const uint64_t c2 = ~0ULL / 0xFF * 0x3F;
        const uint64_t c3 = ~0ULL / 0xFF * 0x0F;

        a |= (a >> 1) & c1; // cascade ones in non-zeroed segments
        a |= (a >> 2) & c2;
        a |= (a >> 4) & c3;
        a &= m; // isolate single bit in each segment
        if (zero)
            a ^= m; // reverse isolated bits if checking for zeroed segments

        return a;
    }
    else if (width == 16) {
        const uint64_t m = ~0ULL / 0xFFFF * 0x1;

        // Masks to avoid spillover between segments in cascades
        const uint64_t c1 = ~0ULL / 0xFFFF * 0x7FFF;
        const uint64_t c2 = ~0ULL / 0xFFFF * 0x3FFF;
        const uint64_t c3 = ~0ULL / 0xFFFF * 0x0FFF;
        const uint64_t c4 = ~0ULL / 0xFFFF * 0x00FF;

        a |= (a >> 1) & c1; // cascade ones in non-zeroed segments
        a |= (a >> 2) & c2;
        a |= (a >> 4) & c3;
        a |= (a >> 8) & c4;
        a &= m; // isolate single bit in each segment
        if (zero)
            a ^= m; // reverse isolated bits if checking for zeroed segments

        return a;
    }

    else if (width == 32) {
        const uint64_t m = ~0ULL / 0xFFFFFFFF * 0x1;

        // Masks to avoid spillover between segments in cascades
        const uint64_t c1 = ~0ULL / 0xFFFFFFFF * 0x7FFFFFFF;
        const uint64_t c2 = ~0ULL / 0xFFFFFFFF * 0x3FFFFFFF;
        const uint64_t c3 = ~0ULL / 0xFFFFFFFF * 0x0FFFFFFF;
        const uint64_t c4 = ~0ULL / 0xFFFFFFFF * 0x00FFFFFF;
        const uint64_t c5 = ~0ULL / 0xFFFFFFFF * 0x0000FFFF;

        a |= (a >> 1) & c1; // cascade ones in non-zeroed segments
        a |= (a >> 2) & c2;
        a |= (a >> 4) & c3;
        a |= (a >> 8) & c4;
        a |= (a >> 16) & c5;
        a &= m; // isolate single bit in each segment
        if (zero)
            a ^= m; // reverse isolated bits if checking for zeroed segments

        return a;
    }
    else if (width == 64) {
        return (a == 0) == zero;
    }
    else {
        REALM_ASSERT_DEBUG(false);
        return uint64_t(-1);
    }
}

template <size_t bitwidth, class Callback>
REALM_NOINLINE bool Array::find_all_will_match(size_t start2, size_t end, size_t baseindex, QueryStateBase* state,
                                               Callback callback) const
{
    size_t end2;

    if constexpr (!std::is_same_v<Callback, std::nullptr_t>)
        end2 = end;
    else {
        REALM_ASSERT_DEBUG(state->match_count() < state->limit());
        size_t process = state->limit() - state->match_count();
        end2 = end - start2 > process ? start2 + process : end;
    }
    for (; start2 < end2; start2++)
        if (!find_action(start2 + baseindex, get<bitwidth>(start2), state, callback))
            return false;
    return true;
}

// This is the main finding function for Array. Other finding functions are just wrappers around this one.
// Search for 'value' using condition cond (Equal, NotEqual, Less, etc) and call find_action() or
// find_action_pattern() for each match. Break and return if find_action() returns false or 'end' is reached.
template <class cond, size_t bitwidth, class Callback>
bool Array::find_optimized(int64_t value, size_t start, size_t end, size_t baseindex, QueryStateBase* state,
                           Callback callback) const
{
    REALM_ASSERT_DEBUG(start <= m_size && (end <= m_size || end == size_t(-1)) && start <= end);

    size_t start2 = start;
    cond c;

    if (end == npos)
        end = m_size;

    if (!(m_size > start2 && start2 < end))
        return true;

    constexpr int64_t lbound = lbound_for_width(bitwidth);
    constexpr int64_t ubound = ubound_for_width(bitwidth);

    // Return immediately if no items in array can match (such as if cond == Greater && value == 100 &&
    // m_ubound == 15)
    if (!c.can_match(value, lbound, ubound))
        return true;

    // optimization if all items are guaranteed to match (such as cond == NotEqual && value == 100 && m_ubound == 15)
    if (c.will_match(value, lbound, ubound)) {
        return find_all_will_match<bitwidth, Callback>(start2, end, baseindex, state, callback);
    }

    // finder cannot handle this bitwidth
    REALM_ASSERT_3(m_width, !=, 0);

#if defined(REALM_COMPILER_SSE)
    // Only use SSE if payload is at least one SSE chunk (128 bits) in size. Also note taht SSE doesn't support
    // Less-than comparison for 64-bit values.
    if ((!(std::is_same<cond, Less>::value && m_width == 64)) && end - start2 >= sizeof(__m128i) && m_width >= 8 &&
        (sseavx<42>() || (sseavx<30>() && std::is_same<cond, Equal>::value && m_width < 64))) {

        // find_sse() must start2 at 16-byte boundary, so search area before that using compare_equality()
        __m128i* const a = reinterpret_cast<__m128i*>(round_up(m_data + start2 * bitwidth / 8, sizeof(__m128i)));
        __m128i* const b = reinterpret_cast<__m128i*>(round_down(m_data + end * bitwidth / 8, sizeof(__m128i)));

        if (!compare<cond, bitwidth, Callback>(
                value, start2, (reinterpret_cast<char*>(a) - m_data) * 8 / no0(bitwidth), baseindex, state, callback))
            return false;

        // Search aligned area with SSE
        if (b > a) {
            if (sseavx<42>()) {
                if (!find_sse<cond, bitwidth, Callback>(
                        value, a, b - a, state,
                        baseindex + ((reinterpret_cast<char*>(a) - m_data) * 8 / no0(bitwidth)), callback))
                    return false;
            }
            else if (sseavx<30>()) {

                if (!find_sse<Equal, bitwidth, Callback>(
                        value, a, b - a, state,
                        baseindex + ((reinterpret_cast<char*>(a) - m_data) * 8 / no0(bitwidth)), callback))
                    return false;
            }
        }

        // Search remainder with compare_equality()
        if (!compare<cond, bitwidth, Callback>(value, (reinterpret_cast<char*>(b) - m_data) * 8 / no0(bitwidth), end,
                                               baseindex, state, callback))
            return false;

        return true;
    }
    else {
        return compare<cond, bitwidth, Callback>(value, start2, end, baseindex, state, callback);
    }
#else
    return compare<cond, bitwidth, Callback>(value, start2, end, baseindex, state, callback);
#endif
}

template <size_t width>
inline int64_t Array::lower_bits() const
{
    if (width == 1)
        return 0xFFFFFFFFFFFFFFFFULL;
    else if (width == 2)
        return 0x5555555555555555ULL;
    else if (width == 4)
        return 0x1111111111111111ULL;
    else if (width == 8)
        return 0x0101010101010101ULL;
    else if (width == 16)
        return 0x0001000100010001ULL;
    else if (width == 32)
        return 0x0000000100000001ULL;
    else if (width == 64)
        return 0x0000000000000001ULL;
    else {
        REALM_ASSERT_DEBUG(false);
        return int64_t(-1);
    }
}

// Tests if any chunk in 'value' is 0
template <size_t width>
inline bool Array::test_zero(uint64_t value) const
{
    uint64_t hasZeroByte;
    uint64_t lower = lower_bits<width>();
    uint64_t upper = lower_bits<width>() * 1ULL << (width == 0 ? 0 : (width - 1ULL));
    hasZeroByte = (value - lower) & ~value & upper;
    return hasZeroByte != 0;
}

// Finds first zero (if eq == true) or non-zero (if eq == false) element in v and returns its position.
// IMPORTANT: This function assumes that at least 1 item matches (test this with test_zero() or other means first)!
template <bool eq, size_t width>
size_t Array::find_zero(uint64_t v) const
{
    size_t start = 0;
    uint64_t hasZeroByte;
    // Warning free way of computing (1ULL << width) - 1
    uint64_t mask = (width == 64 ? ~0ULL : ((1ULL << (width == 64 ? 0 : width)) - 1ULL));

    if (eq == (((v >> (width * start)) & mask) == 0)) {
        return 0;
    }

    // Bisection optimization, speeds up small bitwidths with high match frequency. More partions than 2 do NOT pay
    // off because the work done by test_zero() is wasted for the cases where the value exists in first half, but
    // useful if it exists in last half. Sweet spot turns out to be the widths and partitions below.
    if (width <= 8) {
        hasZeroByte = test_zero<width>(v | 0xffffffff00000000ULL);
        if (eq ? !hasZeroByte : (v & 0x00000000ffffffffULL) == 0) {
            // 00?? -> increasing
            start += 64 / no0(width) / 2;
            if (width <= 4) {
                hasZeroByte = test_zero<width>(v | 0xffff000000000000ULL);
                if (eq ? !hasZeroByte : (v & 0x0000ffffffffffffULL) == 0) {
                    // 000?
                    start += 64 / no0(width) / 4;
                }
            }
        }
        else {
            if (width <= 4) {
                // ??00
                hasZeroByte = test_zero<width>(v | 0xffffffffffff0000ULL);
                if (eq ? !hasZeroByte : (v & 0x000000000000ffffULL) == 0) {
                    // 0?00
                    start += 64 / no0(width) / 4;
                }
            }
        }
    }

    while (eq == (((v >> (width * start)) & mask) != 0)) {
        // You must only call find_zero() if you are sure that at least 1 item matches
        REALM_ASSERT_3(start, <=, 8 * sizeof(v));
        start++;
    }

    return start;
}

// Generate a magic constant used for later bithacks
template <bool gt, size_t width>
int64_t Array::find_gtlt_magic(int64_t v) const
{
    uint64_t mask1 =
        (width == 64
             ? ~0ULL
             : ((1ULL << (width == 64 ? 0 : width)) - 1ULL)); // Warning free way of computing (1ULL << width) - 1
    uint64_t mask2 = mask1 >> 1;
    uint64_t magic = gt ? (~0ULL / no0(mask1) * (mask2 - v)) : (~0ULL / no0(mask1) * v);
    return magic;
}

template <bool gt, size_t width, class Callback>
bool Array::find_gtlt_fast(uint64_t chunk, uint64_t magic, QueryStateBase* state, size_t baseindex,
                           Callback callback) const
{
    // Tests if a a chunk of values contains values that are greater (if gt == true) or less (if gt == false) than v.
    // Fast, but limited to work when all values in the chunk are positive.

    uint64_t mask1 =
        (width == 64
             ? ~0ULL
             : ((1ULL << (width == 64 ? 0 : width)) - 1ULL)); // Warning free way of computing (1ULL << width) - 1
    uint64_t mask2 = mask1 >> 1;
    uint64_t m = gt ? (((chunk + magic) | chunk) & ~0ULL / no0(mask1) * (mask2 + 1))
                    : ((chunk - magic) & ~chunk & ~0ULL / no0(mask1) * (mask2 + 1));
    size_t p = 0;
    while (m) {
        if (find_action_pattern(baseindex, m >> (no0(width) - 1), state))
            break; // consumed, so do not call find_action()

        size_t t = first_set_bit64(m) / no0(width);
        p += t;
        if (!find_action(p + baseindex, (chunk >> (p * width)) & mask1, state, callback))
            return false;

        if ((t + 1) * width == 64)
            m = 0;
        else
            m >>= (t + 1) * width;
        p++;
    }

    return true;
}

// clang-format off
template <bool gt, size_t width, class Callback>
bool Array::find_gtlt(int64_t v, uint64_t chunk, QueryStateBase* state, size_t baseindex, Callback callback) const
{
    // Find items in 'chunk' that are greater (if gt == true) or smaller (if gt == false) than 'v'. Fixme, __forceinline can make it crash in vS2010 - find out why
    if constexpr (width == 1) {
        for (size_t i = 0; i < 64; ++i) {
            int64_t v2 = static_cast<int64_t>(chunk & 0x1);
            if (gt ? v2 > v : v2 < v) {
                if (!find_action(i + baseindex, v2, state, callback)) {
                    return false;
                }
            }
            chunk >>= 1;
        }
    }
    else if constexpr (width == 2) {
        for (size_t i = 0; i < 32; ++i) {
            int64_t v2 = static_cast<int64_t>(chunk & 0x3);
            if (gt ? v2 > v : v2 < v) {
                if (!find_action(i + baseindex, v2, state, callback)) {
                    return false;
                }
            }
            chunk >>= 2;
        }
    }
    else if constexpr (width == 4) {
        for (size_t i = 0; i < 16; ++i) {
            int64_t v2 = static_cast<int64_t>(chunk & 0xf);
            if (gt ? v2 > v : v2 < v) {
                if (!find_action(i + baseindex, v2, state, callback)) {
                    return false;
                }
            }
            chunk >>= 4;
        }
    }
    else if constexpr (width == 8) {
        for (size_t i = 0; i < 8; ++i) {
            int64_t v2 = static_cast<int64_t>(static_cast<int8_t>(chunk & 0xff));
            if (gt ? v2 > v : v2 < v) {
                if (!find_action(i + baseindex, v2, state, callback)) {
                    return false;
                }
            }
            chunk >>= 8;
        }
    }
    else if constexpr (width == 16) {
        for (size_t i = 0; i < 4; ++i) {
            int64_t v2 = static_cast<int64_t>(static_cast<int16_t>(chunk & 0xffff));
            if (gt ? v2 > v : v2 < v) {
                if (!find_action(i + baseindex, v2, state, callback)) {
                    return false;
                }
            }
            chunk >>= 16;
        }
    }
    else if constexpr (width == 32) {
        for (size_t i = 0; i < 2; ++i) {
            int64_t v2 = static_cast<int64_t>(static_cast<int32_t>(chunk & 0xffffffff));
            if (gt ? v2 > v : v2 < v) {
                if (!find_action(i + baseindex, v2, state, callback)) {
                    return false;
                }
            }
            chunk >>= 32;
        }
    }
    else if constexpr (width == 64) {
        int64_t v2 = static_cast<int64_t>(chunk);
        if (gt ? v2 > v : v2 < v) {
            return find_action(baseindex, v2, state, callback);
        }
    }

    static_cast<void>(state);
    static_cast<void>(callback);
    return true;
}
// clang-format on

/// Find items in this Array that are equal (eq == true) or different (eq = false) from 'value'
template <bool eq, size_t width, class Callback>
inline bool Array::compare_equality(int64_t value, size_t start, size_t end, size_t baseindex, QueryStateBase* state,
                                    Callback callback) const
{
    REALM_ASSERT_DEBUG(start <= m_size && (end <= m_size || end == size_t(-1)) && start <= end);

    size_t ee = round_up(start, 64 / no0(width));
    ee = ee > end ? end : ee;
    for (; start < ee; ++start)
        if (eq ? (get<width>(start) == value) : (get<width>(start) != value)) {
            if (!find_action(start + baseindex, get<width>(start), state, callback))
                return false;
        }

    if (start >= end)
        return true;

    if (width != 32 && width != 64) {
        const int64_t* p = reinterpret_cast<const int64_t*>(m_data + (start * width / 8));
        const int64_t* const e = reinterpret_cast<int64_t*>(m_data + (end * width / 8)) - 1;
        const uint64_t mask =
            (width == 64
                 ? ~0ULL
                 : ((1ULL << (width == 64 ? 0 : width)) - 1ULL)); // Warning free way of computing (1ULL << width) - 1
        const uint64_t valuemask =
            ~0ULL / no0(mask) * (value & mask); // the "== ? :" is to avoid division by 0 compiler error

        while (p < e) {
            uint64_t chunk = *p;
            uint64_t v2 = chunk ^ valuemask;
            start = (p - reinterpret_cast<int64_t*>(m_data)) * 8 * 8 / no0(width);
            size_t a = 0;

            while (eq ? test_zero<width>(v2) : v2) {

                if (find_action_pattern(start + baseindex, cascade<width, eq>(v2), state))
                    break; // consumed

                size_t t = find_zero<eq, width>(v2);
                a += t;

                if (a >= 64 / no0(width))
                    break;

                if (!find_action(a + start + baseindex, get<width>(start + a), state, callback))
                    return false;
                v2 >>= (t + 1) * width;
                a += 1;
            }

            ++p;
        }

        // Loop ended because we are near end or end of array. No need to optimize search in remainder in this case
        // because end of array means that
        // lots of search work has taken place prior to ending here. So time spent searching remainder is relatively
        // tiny
        start = (p - reinterpret_cast<int64_t*>(m_data)) * 8 * 8 / no0(width);
    }

    while (start < end) {
        if (eq ? get<width>(start) == value : get<width>(start) != value) {
            if (!find_action(start + baseindex, get<width>(start), state, callback))
                return false;
        }
        ++start;
    }

    return true;
}

// There exists a couple of find() functions that take more or less template arguments. Always call the one that
// takes as most as possible to get best performance.

// This is the one installed into the m_vtable->finder slots.
template <class cond, size_t bitwidth>
bool Array::find_vtable(int64_t value, size_t start, size_t end, size_t baseindex, QueryStateBase* state) const
{
    return find_optimized<cond, bitwidth>(value, start, end, baseindex, state, nullptr);
}

template <class cond, class Callback>
bool Array::find(int64_t value, size_t start, size_t end, size_t baseindex, QueryStateBase* state,
                 Callback callback) const
{
    REALM_TEMPEX3(return find_optimized, cond, m_width, Callback, (value, start, end, baseindex, state, callback));
}

#ifdef REALM_COMPILER_SSE
// 'items' is the number of 16-byte SSE chunks. Returns index of packed element relative to first integer of first
// chunk
template <class cond, size_t width, class Callback>
bool Array::find_sse(int64_t value, __m128i* data, size_t items, QueryStateBase* state, size_t baseindex,
                     Callback callback) const
{
    __m128i search = {0};

    if (width == 8)
        search = _mm_set1_epi8(static_cast<char>(value));
    else if (width == 16)
        search = _mm_set1_epi16(static_cast<short int>(value));
    else if (width == 32)
        search = _mm_set1_epi32(static_cast<int>(value));
    else if (width == 64) {
        if (std::is_same<cond, Less>::value)
            REALM_ASSERT(false);
        else
            search = _mm_set_epi64x(value, value);
    }

    return find_sse_intern<cond, width, Callback>(data, &search, items, state, baseindex, callback);
}

// Compares packed action_data with packed data (equal, less, etc) and performs aggregate action (max, min, sum,
// find_all, etc) on value inside action_data for first match, if any
template <class cond, size_t width, class Callback>
REALM_FORCEINLINE bool Array::find_sse_intern(__m128i* action_data, __m128i* data, size_t items,
                                              QueryStateBase* state, size_t baseindex, Callback callback) const
{
    size_t i = 0;
    __m128i compare_result = {0};
    unsigned int resmask;

    // Search loop. Unrolling it has been tested to NOT increase performance (apparently mem bound)
    for (i = 0; i < items; ++i) {
        // equal / not-equal
        if (std::is_same<cond, Equal>::value || std::is_same<cond, NotEqual>::value) {
            if (width == 8)
                compare_result = _mm_cmpeq_epi8(action_data[i], *data);
            if (width == 16)
                compare_result = _mm_cmpeq_epi16(action_data[i], *data);
            if (width == 32)
                compare_result = _mm_cmpeq_epi32(action_data[i], *data);
            if (width == 64) {
                compare_result = _mm_cmpeq_epi64(action_data[i], *data); // SSE 4.2 only
            }
        }

        // greater
        else if (std::is_same<cond, Greater>::value) {
            if (width == 8)
                compare_result = _mm_cmpgt_epi8(action_data[i], *data);
            if (width == 16)
                compare_result = _mm_cmpgt_epi16(action_data[i], *data);
            if (width == 32)
                compare_result = _mm_cmpgt_epi32(action_data[i], *data);
            if (width == 64)
                compare_result = _mm_cmpgt_epi64(action_data[i], *data);
        }
        // less
        else if (std::is_same<cond, Less>::value) {
            if (width == 8)
                compare_result = _mm_cmplt_epi8(action_data[i], *data);
            else if (width == 16)
                compare_result = _mm_cmplt_epi16(action_data[i], *data);
            else if (width == 32)
                compare_result = _mm_cmplt_epi32(action_data[i], *data);
            else
                REALM_ASSERT(false);
        }

        resmask = _mm_movemask_epi8(compare_result);

        if (std::is_same<cond, NotEqual>::value)
            resmask = ~resmask & 0x0000ffff;

        size_t s = i * sizeof(__m128i) * 8 / no0(width);

        while (resmask != 0) {

            uint64_t upper = lower_bits<width / 8>() << (no0(width / 8) - 1);
            uint64_t pattern =
                resmask &
                upper; // fixme, bits at wrong offsets. Only OK because we only use them in 'count' aggregate
            if (find_action_pattern(s + baseindex, pattern, state))
                break;

            size_t idx = first_set_bit(resmask) * 8 / no0(width);
            s += idx;
            if (!find_action(s + baseindex, get_universal<width>(reinterpret_cast<char*>(action_data), s), state,
                             callback))
                return false;
            resmask >>= (idx + 1) * no0(width) / 8;
            ++s;
        }
    }

    return true;
}
#endif // REALM_COMPILER_SSE

template <class cond, class Callback>
bool Array::compare_leafs(const Array* foreign, size_t start, size_t end, size_t baseindex, QueryStateBase* state,
                          Callback callback) const
{
    cond c;
    REALM_ASSERT_3(start, <=, end);
    if (start == end)
        return true;


    int64_t v;

    // We can compare first element without checking for out-of-range
    v = get(start);
    if (c(v, foreign->get(start))) {
        if (!find_action(start + baseindex, v, state, callback))
            return false;
    }

    start++;

    if (start + 3 < end) {
        v = get(start);
        if (c(v, foreign->get(start)))
            if (!find_action(start + baseindex, v, state, callback))
                return false;

        v = get(start + 1);
        if (c(v, foreign->get(start + 1)))
            if (!find_action(start + 1 + baseindex, v, state, callback))
                return false;

        v = get(start + 2);
        if (c(v, foreign->get(start + 2)))
            if (!find_action(start + 2 + baseindex, v, state, callback))
                return false;

        start += 3;
    }
    else if (start == end) {
        return true;
    }

    bool r;
    REALM_TEMPEX3(r = compare_leafs, cond, m_width, Callback, (foreign, start, end, baseindex, state, callback))
    return r;
}


template <class cond, size_t width, class Callback>
bool Array::compare_leafs(const Array* foreign, size_t start, size_t end, size_t baseindex, QueryStateBase* state,
                          Callback callback) const
{
    size_t fw = foreign->m_width;
    bool r;
    REALM_TEMPEX4(r = compare_leafs_4, cond, width, Callback, fw, (foreign, start, end, baseindex, state, callback))
    return r;
}


template <class cond, size_t width, class Callback, size_t foreign_width>
bool Array::compare_leafs_4(const Array* foreign, size_t start, size_t end, size_t baseindex, QueryStateBase* state,
                            Callback callback) const
{
    cond c;
    char* foreign_m_data = foreign->m_data;

    if (width == 0 && foreign_width == 0) {
        if (c(0, 0)) {
            while (start < end) {
                if (!find_action(start + baseindex, 0, state, callback))
                    return false;
                start++;
            }
        }
        else {
            return true;
        }
    }


#if defined(REALM_COMPILER_SSE)
    if (sseavx<42>() && width == foreign_width && (width == 8 || width == 16 || width == 32)) {
        // We can only use SSE if both bitwidths are equal and above 8 bits and all values are signed
        // and the two arrays are aligned the same way
        if ((reinterpret_cast<size_t>(m_data) & 0xf) == (reinterpret_cast<size_t>(foreign_m_data) & 0xf)) {
            while (start < end && (((reinterpret_cast<size_t>(m_data) & 0xf) * 8 + start * width) % (128) != 0)) {
                int64_t v = get_universal<width>(m_data, start);
                int64_t fv = get_universal<foreign_width>(foreign_m_data, start);
                if (c(v, fv)) {
                    if (!find_action(start + baseindex, v, state, callback))
                        return false;
                }
                start++;
            }
            if (start == end)
                return true;


            size_t sse_items = (end - start) * width / 128;
            size_t sse_end = start + sse_items * 128 / no0(width);

            while (start < sse_end) {
                __m128i* a = reinterpret_cast<__m128i*>(m_data + start * width / 8);
                __m128i* b = reinterpret_cast<__m128i*>(foreign_m_data + start * width / 8);

                bool continue_search =
                    find_sse_intern<cond, width, Callback>(a, b, 1, state, baseindex + start, callback);

                if (!continue_search)
                    return false;

                start += 128 / no0(width);
            }
        }
    }
#endif

    while (start < end) {
        int64_t v = get_universal<width>(m_data, start);
        int64_t fv = get_universal<foreign_width>(foreign_m_data, start);

        if (c(v, fv)) {
            if (!find_action(start + baseindex, v, state, callback))
                return false;
        }

        start++;
    }

    return true;
}


template <class cond, size_t bitwidth, class Callback>
bool Array::compare(int64_t value, size_t start, size_t end, size_t baseindex, QueryStateBase* state,
                    Callback callback) const
{
    bool ret = false;

    if (std::is_same<cond, Equal>::value)
        ret = compare_equality<true, bitwidth, Callback>(value, start, end, baseindex, state, callback);
    else if (std::is_same<cond, NotEqual>::value)
        ret = compare_equality<false, bitwidth, Callback>(value, start, end, baseindex, state, callback);
    else if (std::is_same<cond, Greater>::value)
        ret = compare_relation<true, bitwidth, Callback>(value, start, end, baseindex, state, callback);
    else if (std::is_same<cond, Less>::value)
        ret = compare_relation<false, bitwidth, Callback>(value, start, end, baseindex, state, callback);
    else
        REALM_ASSERT_DEBUG(false);

    return ret;
}

template <bool gt, size_t bitwidth, class Callback>
bool Array::compare_relation(int64_t value, size_t start, size_t end, size_t baseindex, QueryStateBase* state,
                             Callback callback) const
{
    REALM_ASSERT(start <= m_size && (end <= m_size || end == size_t(-1)) && start <= end);
    uint64_t mask = (bitwidth == 64 ? ~0ULL
                                    : ((1ULL << (bitwidth == 64 ? 0 : bitwidth)) -
                                       1ULL)); // Warning free way of computing (1ULL << width) - 1

    size_t ee = round_up(start, 64 / no0(bitwidth));
    ee = ee > end ? end : ee;
    for (; start < ee; start++) {
        if (gt ? (get<bitwidth>(start) > value) : (get<bitwidth>(start) < value)) {
            if (!find_action(start + baseindex, get<bitwidth>(start), state, callback))
                return false;
        }
    }

    if (start >= end)
        return true; // none found, continue (return true) regardless what find_action() would have returned on match

    const int64_t* p = reinterpret_cast<const int64_t*>(m_data + (start * bitwidth / 8));
    const int64_t* const e = reinterpret_cast<int64_t*>(m_data + (end * bitwidth / 8)) - 1;

    // Matches are rare enough to setup fast linear search for remaining items. We use
    // bit hacks from http://graphics.stanford.edu/~seander/bithacks.html#HasLessInWord

    if (bitwidth == 1 || bitwidth == 2 || bitwidth == 4 || bitwidth == 8 || bitwidth == 16) {
        uint64_t magic = find_gtlt_magic<gt, bitwidth>(value);

        // Bit hacks only work if searched item has its most significant bit clear for 'greater than' or
        // 'item <= 1 << bitwidth' for 'less than'
        if (value != int64_t((magic & mask)) && value >= 0 && bitwidth >= 2 &&
            value <= static_cast<int64_t>((mask >> 1) - (gt ? 1 : 0))) {
            // 15 ms
            while (p < e) {
                uint64_t upper = lower_bits<bitwidth>() << (no0(bitwidth) - 1);

                const int64_t v = *p;
                size_t idx;

                // Bit hacks only works if all items in chunk have their most significant bit clear. Test this:
                upper = upper & v;

                if (!upper) {
                    idx = find_gtlt_fast<gt, bitwidth, Callback>(
                        v, magic, state, (p - reinterpret_cast<int64_t*>(m_data)) * 8 * 8 / no0(bitwidth) + baseindex,
                        callback);
                }
                else
                    idx = find_gtlt<gt, bitwidth, Callback>(
                        value, v, state, (p - reinterpret_cast<int64_t*>(m_data)) * 8 * 8 / no0(bitwidth) + baseindex,
                        callback);

                if (!idx)
                    return false;
                ++p;
            }
        }
        else {
            // 24 ms
            while (p < e) {
                int64_t v = *p;
                if (!find_gtlt<gt, bitwidth, Callback>(
                        value, v, state, (p - reinterpret_cast<int64_t*>(m_data)) * 8 * 8 / no0(bitwidth) + baseindex,
                        callback))
                    return false;
                ++p;
            }
        }
        start = (p - reinterpret_cast<int64_t*>(m_data)) * 8 * 8 / no0(bitwidth);
    }

    // matchcount logic in SIMD no longer pays off for 32/64 bit ints because we have just 4/2 elements

    // Test unaligned end and/or values of width > 16 manually
    while (start < end) {
        if (gt ? get<bitwidth>(start) > value : get<bitwidth>(start) < value) {
            if (!find_action(start + baseindex, get<bitwidth>(start), state, callback))
                return false;
        }
        ++start;
    }
    return true;
}

template <class cond>
size_t Array::find_first(int64_t value, size_t start, size_t end) const
{
    REALM_ASSERT(start <= m_size && (end <= m_size || end == size_t(-1)) && start <= end);
    // todo, would be nice to avoid this in order to speed up find_first loops
    QueryStateFindFirst state;
    Finder finder = m_vtable->finder[cond::condition];
    (this->*finder)(value, start, end, 0, &state);

    return static_cast<size_t>(state.m_state);
}

//*************************************************************************************
// Finding code ends                                                                  *
//*************************************************************************************


} // namespace realm

#endif // REALM_ARRAY_HPP