table_view.hpp 22.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
/*************************************************************************
 *
 * Copyright 2016 Realm Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *
 **************************************************************************/

#ifndef REALM_TABLE_VIEW_HPP
#define REALM_TABLE_VIEW_HPP

#include <realm/sort_descriptor.hpp>
#include <realm/table.hpp>
#include <realm/util/features.h>
#include <realm/obj_list.hpp>
#include <realm/list.hpp>
#include <realm/set.hpp>

namespace realm {

// Views, tables and synchronization between them:
//
// Views are built through queries against either tables or another view.
// Views may be restricted to only hold entries provided by another view.
// this other view is called the "restricting view".
// Views may be sorted in ascending or descending order of values in one ore more columns.
//
// Views remember the query from which it was originally built.
// Views remember the table from which it was originally built.
// Views remember a restricting view if one was used when it was originally built.
// Views remember the sorting criteria (columns and direction)
//
// A view may be operated in one of two distinct modes: *reflective* and *imperative*.
// Sometimes the term "reactive" is used instead of "reflective" with the same meaning.
//
// Reflective views:
// - A reflective view *always* *reflect* the result of running the query.
//   If the underlying tables or tableviews change, the reflective view changes as well.
//   A reflective view may need to rerun the query it was generated from, a potentially
//   costly operation which happens on demand.
// - It does not matter whether changes are explicitly done within the transaction, or
//   occur implicitly as part of advance_read() or promote_to_write().
//
// Imperative views:
// - An imperative view only *initially* holds the result of the query. An imperative
//   view *never* reruns the query. To force the view to match it's query (by rerunning it),
//   the view must be operated in reflective mode.
//   An imperative view can be modified explicitly. References can be added, removed or
//   changed.
//
// - In imperative mode, the references in the view tracks movement of the referenced data:
//   If you delete an entry which is referenced from a view, said reference is detached,
//   not removed.
// - It does not matter whether the delete is done in-line (as part of the current transaction),
//   or if it is done implicitly as part of advance_read() or promote_to_write().
//
// The choice between reflective and imperative views might eventually be represented by a
// switch on the tableview, but isn't yet. For now, clients (bindings) must call sync_if_needed()
// to get reflective behavior.
//
// Use cases:
//
// 1. Presenting data
// The first use case (and primary motivator behind the reflective view) is to just track
// and present the state of the database. In this case, the view is operated in reflective
// mode, it is not modified within the transaction, and it is not used to modify data in
// other parts of the database.
//
// 2. Background execution
// This is the second use case. The implicit rerun of the query in our first use case
// may be too costly to be acceptable on the main thread. Instead you want to run the query
// on a worker thread, but display it on the main thread. To achieve this, you need two
// Transactions locked on to the same version of the database. If you have that, you can
// import_copy_of() a view from one transaction to the other. See also db.hpp for more
// information. Technically, you can also import_copy_of into a transaction locked to a
// different version. The imported view will automatically match the importing version.
//
// 3. Iterating a view and changing data
// The third use case (and a motivator behind the imperative view) is when you want
// to make changes to the database in accordance with a query result. Imagine you want to
// find all employees with a salary below a limit and raise their salaries to the limit (pseudocode):
//
//    promote_to_write();
//    view = table.where().less_than(salary_column,limit).find_all();
//    for (size_t i = 0; i < view.size(); ++i) {
//        view[i].set(salary_column, limit);
//        // add this to get reflective mode: view.sync_if_needed();
//    }
//    commit_and_continue_as_read();
//
// This is idiomatic imperative code and it works if the view is operated in imperative mode.
//
// If the view is operated in reflective mode, the behaviour surprises most people: When the
// first salary is changed, the entry no longer fullfills the query, so it is dropped from the
// view implicitly. view[0] is removed, view[1] moves to view[0] and so forth. But the next
// loop iteration has i=1 and refers to view[1], thus skipping view[0]. The end result is that
// every other employee get a raise, while the others don't.
//
// 4. Iterating intermixed with implicit updates
// This leads us to use case 4, which is similar to use case 3, but uses promote_to_write()
// intermixed with iterating a view. This is actually quite important to some, who do not want
// to end up with a large write transaction.
//
//    view = table.where().less_than(salary_column,limit).find_all();
//    for (size_t i = 0; i < view.size(); ++i) {
//        promote_to_write();
//        view[i].set(salary_column, limit);
//        commit_and_continue_as_write();
//    }
//
// Anything can happen at the call to promote_to_write(). The key question then becomes: how
// do we support a safe way of realising the original goal (raising salaries) ?
//
// using the imperative operating mode:
//
//    view = table.where().less_than(salary_column,limit).find_all();
//    for (size_t i = 0; i < view.size(); ++i) {
//        promote_to_write();
//        // add r.sync_if_needed(); to get reflective mode
//        if (r.is_obj_valid(i)) {
//            auto r = view[i];
//            view[i].set(salary_column, limit);
//        }
//        commit_and_continue_as_write();
//    }
//
// This is safe, and we just aim for providing low level safety: is_obj_valid() can tell
// if the reference is valid, and the references in the view continue to point to the
// same object at all times, also following implicit updates. The rest is up to the
// application logic.
//
// It is important to see, that there is no guarantee that all relevant employees get
// their raise in cases whith concurrent updates. At every call to promote_to_write() new
// employees may be added to the underlying table, but as the view is in imperative mode,
// these new employees are not added to the view. Also at promote_to_write() an existing
// employee could recieve a (different, larger) raise which would then be overwritten and lost.
// However, these are problems that you should expect, since the activity is spread over multiple
// transactions.

class TableView : public ObjList {
public:
    /// Construct null view (no memory allocated).
    TableView() {}


    /// Construct empty view, ready for addition of row indices.
    TableView(ConstTableRef parent);
    TableView(ConstTableRef parent, Query& query, size_t start, size_t end, size_t limit);
    TableView(ConstTableRef parent, ColKey column, const Obj& obj);
    TableView(ConstTableRef parent, LinkCollectionPtr collection);

    /// Copy constructor.
    TableView(const TableView&);

    /// Move constructor.
    TableView(TableView&&) noexcept;

    TableView& operator=(const TableView&);
    TableView& operator=(TableView&&) noexcept;

    TableView(TableView& source, Transaction* tr, PayloadPolicy mode);

    ~TableView() {}

    TableRef get_parent() noexcept
    {
        return m_table.cast_away_const();
    }

    TableRef get_target_table() const final
    {
        return m_table.cast_away_const();
    }
    size_t size() const final
    {
        return m_key_values.size();
    }
    bool is_empty() const noexcept
    {
        return m_key_values.size() == 0;
    }

    // Tells if the table that this TableView points at still exists or has been deleted.
    bool is_attached() const noexcept
    {
        return bool(m_table);
    }

    ObjKey get_key(size_t ndx) const final
    {
        return m_key_values.get(ndx);
    }

    bool is_obj_valid(size_t ndx) const noexcept final
    {
        return m_table->is_valid(get_key(ndx));
    }

    Obj get(size_t row_ndx) const
    {
        REALM_ASSERT(row_ndx < size());
        ObjKey key(m_key_values.get(row_ndx));
        REALM_ASSERT(key);
        return m_table->get_object(key);
    }

    Obj get_object(size_t ndx) const final
    {
        return get(ndx);
    }

    // Get the query used to create this TableView
    // The query will have a null source table if this tv was not created from
    // a query
    const Query& get_query() const noexcept
    {
        return m_query;
    }

    void clear();

    // Change the TableView to be backed by another query
    // only works if the TableView is already backed by a query, and both
    // queries points to the same Table
    void update_query(const Query& q);

    std::unique_ptr<TableView> clone() const
    {
        return std::unique_ptr<TableView>(new TableView(*this));
    }

    LinkCollectionPtr clone_obj_list() const final
    {
        return std::unique_ptr<TableView>(new TableView(*this));
    }

    // import_copy_of() machinery entry points based on dynamic type. These methods:
    // a) forward their calls to the static type entry points.
    // b) new/delete patch data structures.
    std::unique_ptr<TableView> clone_for_handover(Transaction* tr, PayloadPolicy mode)
    {
        std::unique_ptr<TableView> retval(new TableView(*this, tr, mode));
        return retval;
    }
    template <Action action, typename T, typename R>
    R aggregate(ColKey column_key, size_t* result_count = nullptr, ObjKey* return_key = nullptr) const;
    template <typename T>
    size_t aggregate_count(ColKey column_key, T count_target) const;

    int64_t sum_int(ColKey column_key) const;
    int64_t maximum_int(ColKey column_key, ObjKey* return_key = nullptr) const;
    int64_t minimum_int(ColKey column_key, ObjKey* return_key = nullptr) const;
    double average_int(ColKey column_key, size_t* value_count = nullptr) const;
    size_t count_int(ColKey column_key, int64_t target) const;

    double sum_float(ColKey column_key) const;
    float maximum_float(ColKey column_key, ObjKey* return_key = nullptr) const;
    float minimum_float(ColKey column_key, ObjKey* return_key = nullptr) const;
    double average_float(ColKey column_key, size_t* value_count = nullptr) const;
    size_t count_float(ColKey column_key, float target) const;

    double sum_double(ColKey column_key) const;
    double maximum_double(ColKey column_key, ObjKey* return_key = nullptr) const;
    double minimum_double(ColKey column_key, ObjKey* return_key = nullptr) const;
    double average_double(ColKey column_key, size_t* value_count = nullptr) const;
    size_t count_double(ColKey column_key, double target) const;

    Timestamp minimum_timestamp(ColKey column_key, ObjKey* return_key = nullptr) const;
    Timestamp maximum_timestamp(ColKey column_key, ObjKey* return_key = nullptr) const;
    size_t count_timestamp(ColKey column_key, Timestamp target) const;

    Decimal128 sum_decimal(ColKey column_key) const;
    Decimal128 maximum_decimal(ColKey column_key, ObjKey* return_key = nullptr) const;
    Decimal128 minimum_decimal(ColKey column_key, ObjKey* return_key = nullptr) const;
    Decimal128 average_decimal(ColKey column_key, size_t* value_count = nullptr) const;
    size_t count_decimal(ColKey column_key, Decimal128 target) const;

    Decimal128 sum_mixed(ColKey column_key) const;
    Mixed maximum_mixed(ColKey column_key, ObjKey* return_key = nullptr) const;
    Mixed minimum_mixed(ColKey column_key, ObjKey* return_key = nullptr) const;
    Decimal128 average_mixed(ColKey column_key, size_t* value_count = nullptr) const;
    size_t count_mixed(ColKey column_key, Mixed target) const;

    /// Search this view for the specified key. If found, the index of that row
    /// within this view is returned, otherwise `realm::not_found` is returned.
    size_t find_by_source_ndx(ObjKey key) const noexcept
    {
        return m_key_values.find_first(key);
    }

    // Conversion
    void to_json(std::ostream&, size_t link_depth = 0) const;

    // Determine if the view is 'in sync' with the underlying table
    // as well as other views used to generate the view. Note that updates
    // through views maintains synchronization between view and table.
    // It doesnt by itself maintain other views as well. So if a view
    // is generated from another view (not a table), updates may cause
    // that view to be outdated, AND as the generated view depends upon
    // it, it too will become outdated.
    bool is_in_sync() const final;

    // A TableView is frozen if it is a) obtained from a query against a frozen table
    // and b) is synchronized (is_in_sync())
    bool is_frozen()
    {
        return m_table->is_frozen() && is_in_sync();
    }
    // Tells if this TableView depends on a LinkList or row that has been deleted.
    bool depends_on_deleted_object() const;

    // Synchronize a view to match a table or tableview from which it
    // has been derived. Synchronization is achieved by rerunning the
    // query used to generate the view. If derived from another view, that
    // view will be synchronized as well.
    //
    // "live" or "reactive" views are implemented by calling sync_if_needed()
    // before any of the other access-methods whenever the view may have become
    // outdated.
    void sync_if_needed() const final;
    // Return the version of the source it was created from.
    TableVersions get_dependency_versions() const
    {
        TableVersions ret;
        get_dependencies(ret);
        return ret;
    }


    // Sort m_key_values according to one column
    void sort(ColKey column, bool ascending = true);

    // Sort m_key_values according to multiple columns
    void sort(SortDescriptor order);

    // Get the number of total results which have been filtered out because a number of "LIMIT" operations have
    // been applied. This number only applies to the last sync.
    size_t get_num_results_excluded_by_limit() const noexcept
    {
        return m_limit_count;
    }

    // Remove rows that are duplicated with respect to the column set passed as argument.
    // distinct() will preserve the original order of the row pointers, also if the order is a result of sort()
    // If two rows are indentical (for the given set of distinct-columns), then the last row is removed.
    // You can call sync_if_needed() to update the distinct view, just like you can for a sorted view.
    // Each time you call distinct() it will compound on the previous calls
    void distinct(ColKey column);
    void distinct(DistinctDescriptor columns);
    void limit(LimitDescriptor limit);

    // Replace the order of sort and distinct operations, bypassing manually
    // calling sort and distinct. This is a convenience method for bindings.
    void apply_descriptor_ordering(const DescriptorOrdering& new_ordering);

    // Gets a readable and parsable string which completely describes the sort and
    // distinct operations applied to this view.
    std::string get_descriptor_ordering_description() const;

    // Returns whether the rows are guaranteed to be in table order.
    // This is true only of unsorted TableViews created from either:
    // - Table::find_all()
    // - Query::find_all() when the query is not restricted to a view.
    bool is_in_table_order() const;

    bool is_backlink_view() const
    {
        return m_source_column_key != ColKey();
    }

protected:
    // This TableView can be "born" from 4 different sources:
    // - LinkView
    // - Query::find_all()
    // - Table::get_distinct_view()
    // - Table::get_backlink_view()

    void get_dependencies(TableVersions&) const final;

    void do_sync();
    void do_sort(const DescriptorOrdering&);

    mutable ConstTableRef m_table;
    // The source column index that this view contain backlinks for.
    ColKey m_source_column_key;
    // The target object that rows in this view link to.
    ObjKey m_linked_obj_key;
    ConstTableRef m_linked_table;

    // If this TableView was created from an Object Collection, then this reference points to it. Otherwise it's 0
    mutable LinkCollectionPtr m_collection_source;

    // Stores the ordering criteria of applied sort and distinct operations.
    DescriptorOrdering m_descriptor_ordering;
    size_t m_limit_count = 0;

    // A valid query holds a reference to its table which must match our m_table.
    // hence we can use a query with a null table reference to indicate that the view
    // was NOT generated by a query, but follows a table directly.
    Query m_query;
    // parameters for findall, needed to rerun the query
    size_t m_start = 0;
    size_t m_end = size_t(-1);
    size_t m_limit = size_t(-1);

    // FIXME: This class should eventually be replaced by std::vector<ObjKey>
    // It implements a vector of ObjKey, where the elements are held in the
    // heap (default allocator is the only option)
    class KeyValues : public KeyColumn {
    public:
        KeyValues()
            : KeyColumn(Allocator::get_default())
        {
        }
        KeyValues(const KeyValues&) = delete;
        ~KeyValues()
        {
            destroy();
        }
        void move_from(KeyValues&);
        void copy_from(const KeyValues&);
    };

    mutable TableVersions m_last_seen_versions;
    KeyValues m_key_values;

private:
    ObjKey find_first_integer(ColKey column_key, int64_t value) const;
    template <class oper>
    Timestamp minmax_timestamp(ColKey column_key, ObjKey* return_key) const;
    util::RaceDetector m_race_detector;

    friend class Table;
    friend class Obj;
    friend class Query;
    friend class DB;
    friend class ObjList;
    friend class LnkLst;
};


// ================================================================================================
// TableView Implementation:

inline TableView::TableView(ConstTableRef parent)
    : m_table(parent) // Throws
{
    m_key_values.create();
    if (m_table) {
        m_last_seen_versions.emplace_back(m_table->get_key(), m_table->get_content_version());
    }
}

inline TableView::TableView(ConstTableRef parent, Query& query, size_t start, size_t end, size_t lim)
    : m_table(parent)
    , m_query(query)
    , m_start(start)
    , m_end(end)
    , m_limit(lim)
{
    m_key_values.create();
}

inline TableView::TableView(ConstTableRef src_table, ColKey src_column_key, const Obj& obj)
    : m_table(src_table) // Throws
    , m_source_column_key(src_column_key)
    , m_linked_obj_key(obj.get_key())
    , m_linked_table(obj.get_table())
{
    m_key_values.create();
    if (m_table) {
        m_last_seen_versions.emplace_back(m_table->get_key(), m_table->get_content_version());
        m_last_seen_versions.emplace_back(obj.get_table()->get_key(), obj.get_table()->get_content_version());
    }
}

inline TableView::TableView(ConstTableRef parent, LinkCollectionPtr collection)
    : m_table(parent) // Throws
    , m_collection_source(std::move(collection))
{
    REALM_ASSERT(m_collection_source);
    m_key_values.create();
    if (m_table) {
        m_last_seen_versions.emplace_back(m_table->get_key(), m_table->get_content_version());
    }
}

inline TableView::TableView(const TableView& tv)
    : m_table(tv.m_table)
    , m_source_column_key(tv.m_source_column_key)
    , m_linked_obj_key(tv.m_linked_obj_key)
    , m_linked_table(tv.m_linked_table)
    , m_collection_source(tv.m_collection_source ? tv.m_collection_source->clone_obj_list() : LinkCollectionPtr{})
    , m_descriptor_ordering(tv.m_descriptor_ordering)
    , m_query(tv.m_query)
    , m_start(tv.m_start)
    , m_end(tv.m_end)
    , m_limit(tv.m_limit)
    , m_last_seen_versions(tv.m_last_seen_versions)
{
    m_key_values.copy_from(tv.m_key_values);
    m_limit_count = tv.m_limit_count;
}

inline TableView::TableView(TableView&& tv) noexcept
    : m_table(tv.m_table)
    , m_source_column_key(tv.m_source_column_key)
    , m_linked_obj_key(tv.m_linked_obj_key)
    , m_linked_table(tv.m_linked_table)
    , m_collection_source(std::move(tv.m_collection_source))
    , m_descriptor_ordering(std::move(tv.m_descriptor_ordering))
    , m_query(std::move(tv.m_query))
    , m_start(tv.m_start)
    , m_end(tv.m_end)
    , m_limit(tv.m_limit)
    // if we are created from a table view which is outdated, take care to use the outdated
    // version number so that we can later trigger a sync if needed.
    , m_last_seen_versions(std::move(tv.m_last_seen_versions))
{
    m_key_values.move_from(tv.m_key_values);
    m_limit_count = tv.m_limit_count;
}

inline TableView& TableView::operator=(TableView&& tv) noexcept
{
    m_table = std::move(tv.m_table);

    m_key_values.move_from(tv.m_key_values);
    m_query = std::move(tv.m_query);
    m_last_seen_versions = tv.m_last_seen_versions;
    m_start = tv.m_start;
    m_end = tv.m_end;
    m_limit = tv.m_limit;
    m_limit_count = tv.m_limit_count;
    m_source_column_key = tv.m_source_column_key;
    m_linked_obj_key = tv.m_linked_obj_key;
    m_linked_table = tv.m_linked_table;
    m_collection_source = std::move(tv.m_collection_source);
    m_descriptor_ordering = std::move(tv.m_descriptor_ordering);

    return *this;
}

inline TableView& TableView::operator=(const TableView& tv)
{
    if (this == &tv)
        return *this;

    m_key_values.copy_from(tv.m_key_values);

    m_query = tv.m_query;
    m_last_seen_versions = tv.m_last_seen_versions;
    m_start = tv.m_start;
    m_end = tv.m_end;
    m_limit = tv.m_limit;
    m_limit_count = tv.m_limit_count;
    m_source_column_key = tv.m_source_column_key;
    m_linked_obj_key = tv.m_linked_obj_key;
    m_linked_table = tv.m_linked_table;
    m_collection_source = tv.m_collection_source ? tv.m_collection_source->clone_obj_list() : LinkCollectionPtr{};
    m_descriptor_ordering = tv.m_descriptor_ordering;

    return *this;
}

} // namespace realm

#endif // REALM_TABLE_VIEW_HPP